TABLE B.3. Peak positions and associated vibrational modes for the VN₃H^q defect in diamond from first-principals density functional simulations of IR spectra from selected studies.

Frequency (cm ⁻	¹) Defect	Mode (x)	H/Ah	S	Functional	Cell	Basis set	Comment	Ref.
	VN₃H:	C-H bendin	ıg frequ	uenci	es (observed	C-H be	ending frequency	y is 1405 cm ⁻¹)	
1296	VN_3H	$C-H_{b}$	Н	0	LDA*	216	Gaussian (<i>atom centered</i>)	Basis set: 40 (C/N) 5 core atoms incl. MP2 sampling	[1]
1297	VN₃H	C-H₀	н	0	LDA*	64	Gaussian (<i>atom centered</i>)	Basis set: 28 (C) 40 (N) 5 core atoms incl. MP2 sampling	[1]
1333	VN₃H	C-H _b (b)	Н	-	B3LYP**	64	Gaussian (<i>all electron</i>)	Basis set: 6-21G (C/N) 6-31G (H) MP8 sampling	[2]
1360	VN₃H	$C-H_{\rm b}$	Н	0	PBE*	1000	Gaussian (<i>atom centered</i>)	Γ point sampling	[3]
1361	VN₃H	C-H₀	Н	0	LDA*	64	Gaussian (atom centered)	Basis set: 40 (C/N) All atoms incl. MP2 sampling	[1]
1365	VN₃H	C-H₀	Н	0	LDA*	216	Gaussian (<i>atom centered</i>)	Basis set: 28 (C) 40 (N) All atoms incl. MP2 sampling	[1]
1366	VN₃H	C-H₀	н	0	GGA*	64	Gaussian (<i>atom centered</i>)	Basis set: 40 (C/N) All atoms incl. MP2 sampling	[1]
1367	VN_3H	$C-H_{b}$	н	0	LDA*	64	Gaussian (<i>atom centered</i>)	Basis set: 28 (C) 40 (N) All atoms incl. MP2 sampling	[1]
1384	VN_3H	$C-H_{b}$	н	0	GGA*	64	Gaussian (<i>atom centered</i>)	Basis set: 40 (C/N) All atoms incl.	[1]
1411	VN_3H	$C-H_{\rm b}$	Н	-	B3LYP**	216	Gaussian (<i>all electron</i>)	Freq. calc. includes only defect atoms	[4]

								MP 2x2x2 mesh	
1415	VN₃H	$C-H_{b}$	Н	-	B3LYP**	64	Gaussian (<i>all electron</i>)	Freq. calc. includes only defect atoms MP 4x4x4 mesh	[4]
1416	VN_3H	$C-H_{\rm b}$	Н	-	B3LYP**	216	Gaussian (<i>all electron</i>)	Freq. calc. includes only defect atoms MP 2x2x2 mesh	[4]
1442	VN₃H	C-H _b	Ah	-	B3LYP**	64	Gaussian (<i>all electron</i>)	Basis set: 6-21G (C/N) 6-31G (H) Γ point sampling C-H mode coupling Anharmonicity by VCI	[5]
1446	VN₃H	C-H₀	Ah	-	B3LYP**	64	Gaussian (<i>all electron</i>)	Basis set: 6-21G (C/N) 6-31G (H) Γ point sampling C-H mode coupling Anharmonicity by VSCF	[5]
1447	VN₃H	C-H₀	Н	-	B3LYP**	216	Gaussian (<i>all electron</i>)	Freq. calc. includes first 12 neighboring atoms MP 2x2x2 mesh	[4]
1448	VN₃H	$C-H_b$	Н	-	B3LYP**	32	Gaussian (<i>all electron</i>)	Basis set: 6-21G (C/N) 6-31G (Η) Γροint sampling	[5]
1452	VN₃H	C-H₀	Н	-	B3LYP**	64	Gaussian (<i>all electron</i>)	Freq. calc. includes first 12 neighboring atoms MP 4x4x4 mesh	[4]
1454	VN₃H	C-H₀	Η	-	B3LYP**	216	Gaussian (<i>all electron</i>)	Freq. calc. includes first 24 neighboring atoms MP 2x2x2 mesh	[4]
1459	VN₃H	C-H₀	Η	-	B3LYP**	64	Gaussian (<i>all electron</i>)	Freq. calc. includes first 24 neighboring atoms MP 4x4x4 mesh	[4]
1461	VN₃H	C-H _b (a)	Н	-	B3LYP**	64	Gaussian (<i>all electron</i>)	Basis set: 6-21G (C/N) 6-31G (H) MP8 sampling	[2]

MP8 sampling

1461	VN₃H	C-H₀	Н	-	B3LYP**	64	Gaussian (<i>all electron</i>)	Basis set: 6-21G (C/N) 6-31G (H) E point sampling	[5]
1463	VN₃H	C-H₀	Н	-	B3LYP**	128	Gaussian (<i>all electron</i>)	Basis set: 6-21G (C/N) 6-31G (H)	[5]
1476	VN₃H	C-H _b	Ah	-	B3LYP**	64	Gaussian (<i>all electron</i>)	Basis set: 6-21G (C/N) 6-31G (H) F point sampling No C-H mode coupling Anharmonicity by VCI	[5]
	VN₃H: C-	H stretch	ning freq	luenc	ies (observe	d C-H st	retching frequer	ncy is 3107 cm ⁻¹)	
2207	VN₃H	C-H _s	Н	0	LDA*	216	Gaussian (<i>atom centered</i>)	¹³ C-D isotopes Basis set: 28 (C) 40 (N) All atoms incl. MP2 sampling	[1]
2221	VN_3H	C-H _s	Н	0	LDA*	216	Gaussian (<i>atom centered</i>)	¹² C-D isotopes Basis set: 28 (C) 40 (N) All atoms incl. MP2 sampling	[1]
3018	VN₃H	C-H _s	Н	0	LDA*	64	Gaussian (<i>atom centered</i>)	Basis set: 28 (C) 40 (N) 5 core atoms incl. MP2 sampling	[1]
3025	VN₃H	C-H _s	Н	0	LDA*	216	Gaussian (<i>atom centered</i>)	¹³ C-H isotopes Basis set: 28 (C) 40 (N) All atoms incl.	[1]
3028	VN₃H	C-H _s	Н	0	LDA*	64	Gaussian (<i>atom centered</i>)	Basis set: 28 (C) 40 (N) All atoms incl.	[1]
3034	VN₃H	C-H₅	Н	0	LDA*	216	Gaussian (<i>atom centered</i>)	Basis set: 28 (C) 40 (N) All atoms incl.	[1]
3037	VN₃H	C-H₅	н	0	LDA*	64	Gaussian	Basis set: 40 (C/N)	[1]

							(atom centered)	All atoms incl. MP2 sampling	
3039	VN_3H	C-H₅	Η	0	LDA*	216	Gaussian (<i>atom centered</i>)	Basis set: 40 (C/N) 5 core atoms incl. MP2 sampling	[1]
3054	VN₃H	C-H _s	Ah	-	B3LYP**	64	Gaussian (<i>all electron</i>)	Basis set: 6-21G (C/N) 6-31G (H) F point sampling C-H mode coupling Anharmonicity by VSCF	[5]
3094	VN₃H	C-H₅	Ah	-	B3LYP**	64	Gaussian (<i>all electron</i>)	Basis set: 6-21G (C/N) 6-31G (H) Γ point sampling C-H mode coupling Anharmonicity by VCI	[5]
3120	VN₃H	C-H _{sy}	Н	0	PBE*	1000	Gaussian (<i>atom centered</i>)	Γ point sampling	[3]
3122	VN ₃ H	C-H₅	Ah	-	B3LYP**	64	Gaussian (<i>all electron</i>)	Basis set: 6-21G (C/N) 6-31G (H) F point sampling No C-H mode coupling Anharmonicity by VCI	[5]
3125	VN₃H	C-H _s	Н	0	GGA*	64	Gaussian (<i>atom centered</i>)	Basis set: 40 (C/N) All atoms incl. MP2 sampling	[1]
3133	VN₃H	C-H _s (a)	Ah	-	B3LYP	64	Gaussian (<i>all electron</i>)	Basis set: 6-21G (C/N) 6-31G (H) MP8 sampling	[2]
3196	VN_3H	C-H₅	н	0	GGA*	64	Gaussian (<i>atom centered</i>)	Basis set: 40 (C/N) All atoms incl.	[1]
3249	VN₃H	C-H₅	Н	-	B3LYP**	32	Gaussian (all electron)	Basis set: 6-21G (C/N) 6-31G (H)	[5]
3250	VN_3H	C-H _s (a)	Н	-	B3LYP**	64	Gaussian (<i>all electron</i>)	Basis set: 6-21G (C/N) 6-31G (H)	[2]

								wir o oampning	
3250	VN_3H	C-H _s	Н	-	B3LYP**	64	Gaussian (<i>all electron</i>)	Basis set: 6-21G (C/N) 6-31G (H)	[5]
3250	VN_3H	C-H₅	Н	-	B3LYP**	64	Gaussian (<i>all electron</i>)	Γ point sampling Freq. calc. includes only defect atoms MP 4x4x4 mosb	[4]
3251	VN₃H	C-H₅	Н	-	B3LYP**	128	Gaussian (<i>all electron</i>)	Basis set: 6-21G (C/N) 6-31G (H)	[5]
3262	VN_3H	C-H _s	Н	-	B3LYP**	216	Gaussian (<i>all electron</i>)	Freq. calc. includes only defect atoms MP 2x2x2 mesh	[4]

MP8 sampling

The defect electrical charge *q* (*e.g.* VNH^{*q*}), and the harmonic (H) or anharmonic (Ah) calculated frequencies are only included if explicitly specified in the corresponding reference.

Where more than one H-atom is present, both symmetric (C-H_{sy}) and anti-symmetric (C-H_{asy}) stretching modes are expected and reported only if explicitly specified in the corresponding reference.

Isotopes ¹²C, ¹H and ¹⁴N is assumed unless otherwise specified.

Total spin quantum number = S; S = 0 (singlet), S = 1 (triplet), S = 3/2 (quartet), S = 1/2 (doublet), S = 2 (quadruplet).

Monkhorst-Pack sampling scheme denoted as MP*n*, where a mesh of $n \ge n \ge n \ge n$ points (*k*) is used to sample the Brillouin Zone. Point symmetry of a given defect may reduce *k*.

AIMPRO* (*ab initio* modelling PROgram), *Crystal*** and Quantum ESPRESSO*** density-functional modelling programs indicated in **Functional** column.

Note that many bands have calculated intensities significantly less than the intensity of the 3107cm⁻¹ band and are unlikely to be observed in experimental data.

References:

- [1] J.P. Goss, P.R. Briddon, V. Hill, R. Jones, M.J. Rayson, Identification of the structure of the 3107 cm-1 H-related defect in diamond, Journal of Physics: Condensed Matter. **26**, 145801 (2014). https://doi.org/10.1088/0953-8984/26/14/145801.
- [2] S. Salustro, F.S. Gentile, A. Erba, P. Carbonniére, K.E. El-Kelany, R. Dovesi, The characterization of the VNxHy defects in diamond through the infrared vibrational spectrum. A quantum mechanical investigation, Carbon N Y. **132**, (2018). https://doi.org/10.1016/j.carbon.2018.02.045.
- [3] C.V. Peaker, First principles study of point defects in diamond, PhD, Newcastle University, 2018.
- [4] F. Pascale, S. Salustro, A.M. Ferrari, M. Rérat, P. D'Arco, R. Dovesi, The Infrared spectrum of very large (periodic) systems: global versus fragment strategies—the case of three defects in diamond, Theor Chem Acc. 137, 170 (2018). https://doi.org/10.1007/s00214-018-2380-3.
- [5] F.S. Gentile, S. Salustro, M. Causà, A. Erba, P. Carbonniére, R. Dovesi, The VN3H defect in diamond: A quantum-mechanical characterization, Physical Chemistry Chemical Physics. **19**, (2017). https://doi.org/10.1039/c7cp03957c.