Performing an ANOVA comparing the PSEs of all the subjects in different conditions

library("rstatix")
## Warning: replacing previous import 'vctrs::data_frame' by 'tibble::data_frame'
## when loading 'dplyr'
## 
## Attaching package: 'rstatix'
## The following object is masked from 'package:stats':
## 
##     filter
library("readxl")
Parametric_curve_results <- read_excel("~/Desktop/Parametric_curve_results.xlsx")
library(afex)
## Loading required package: lme4
## Loading required package: Matrix
## Registered S3 methods overwritten by 'lme4':
##   method                          from
##   cooks.distance.influence.merMod car 
##   influence.merMod                car 
##   dfbeta.influence.merMod         car 
##   dfbetas.influence.merMod        car
## ************
## Welcome to afex. For support visit: http://afex.singmann.science/
## - Functions for ANOVAs: aov_car(), aov_ez(), and aov_4()
## - Methods for calculating p-values with mixed(): 'S', 'KR', 'LRT', and 'PB'
## - 'afex_aov' and 'mixed' objects can be passed to emmeans() for follow-up tests
## - Get and set global package options with: afex_options()
## - Set sum-to-zero contrasts globally: set_sum_contrasts()
## - For example analyses see: browseVignettes("afex")
## ************
## 
## Attaching package: 'afex'
## The following object is masked from 'package:lme4':
## 
##     lmer
aov_model <- aov_ez(data = Parametric_curve_results, dv = "result", within = c("inducer"), id = "dog")
aov_model
## Anova Table (Type 3 tests)
## 
## Response: result
##    Effect          df  MSE         F  ges p.value
## 1 inducer 1.88, 13.16 0.49 44.14 *** .761   <.001
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
## 
## Sphericity correction method: GG

Calculating the Fisher’s z as a measure of the effect size

F_statistic <- 44.14
DF1 <- 2
DF2 <- 14

eta_squared <- F_statistic / (F_statistic + DF2)

fisher_z <- 0.5 * log((1 + eta_squared) / (1 - eta_squared))

print(fisher_z)
## [1] 0.9943284

Running the pairwise comparisons

library(rstatix)
library("readxl")
Parametric_curve_results <- read_excel("~/Desktop/Parametric_curve_results.xlsx")

pairwise_t_test(result~inducer,paired=TRUE, p.adjust.method = "none", data = Parametric_curve_results ) 
## # A tibble: 3 x 10
##   .y.    group1 group2    n1    n2 statistic    df        p   p.adj p.adj.signif
## * <chr>  <chr>  <chr>  <int> <int>     <dbl> <dbl>    <dbl>   <dbl> <chr>       
## 1 result ind16  ind4       8     8      9.05     7  4.11e-5 4.11e-5 ****        
## 2 result ind16  no         8     8      6.34     7  3.90e-4 3.90e-4 ***         
## 3 result ind4   no         8     8     -3.54     7  1.00e-2 1.00e-2 **

Running a binomial logistic regression model assessing the effect of discrimination ratio, condition, and attention towards the inducer on dogs’ choices in the test presentations, where discriminations of either 4 vs 8 or 6 vs 8 were presented

library("readxl")
Data1 <- read_excel(("~/Desktop/Data1.xlsx"), 
col_types = c("text", "text", "text", 
        "text", "numeric", "numeric", "text"))

library(lme4)
mod1 <- glmer(formula = Choice ~  (1|`Dog`) +  (1|`Session_nr`)  + (1|`Trial_nr`)
               + Discrimination_ratio  + condition  
               + Attention_towards_the_inducer
               + condition * Attention_towards_the_inducer
               + condition * Discrimination_ratio,
               family = binomial(logit),
               data = Data1) 
## boundary (singular) fit: see ?isSingular
summary(mod1)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## Choice ~ (1 | Dog) + (1 | Session_nr) + (1 | Trial_nr) + Discrimination_ratio +  
##     condition + Attention_towards_the_inducer + condition * Attention_towards_the_inducer +  
##     condition * Discrimination_ratio
##    Data: Data1
## 
##      AIC      BIC   logLik deviance df.resid 
##    419.3    456.9   -200.7    401.3      470 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -7.1727  0.1433  0.3085  0.4921  0.9090 
## 
## Random effects:
##  Groups     Name        Variance  Std.Dev.
##  Session_nr (Intercept) 7.175e-02 0.267854
##  Trial_nr   (Intercept) 2.601e-09 0.000051
##  Dog        (Intercept) 6.687e-02 0.258584
## Number of obs: 479, groups:  Session_nr, 25; Trial_nr, 11; Dog, 8
## 
## Fixed effects:
##                                                Estimate Std. Error z value
## (Intercept)                                      1.6402     0.6908   2.374
## Discrimination_ratio6                           -1.3669     0.5511  -2.480
## conditionsmaller                                -0.2862     0.7836  -0.365
## Attention_towards_the_inducer                    2.4142     0.8943   2.700
## conditionsmaller:Attention_towards_the_inducer  -2.2144     1.0222  -2.166
## Discrimination_ratio6:conditionsmaller           0.3439     0.6293   0.547
##                                                Pr(>|z|)   
## (Intercept)                                     0.01759 * 
## Discrimination_ratio6                           0.01312 * 
## conditionsmaller                                0.71493   
## Attention_towards_the_inducer                   0.00694 **
## conditionsmaller:Attention_towards_the_inducer  0.03029 * 
## Discrimination_ratio6:conditionsmaller          0.58469   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Dscr_6 cndtns Att___ c:A___
## Dscrmntn_r6 -0.437                            
## condtnsmllr -0.854  0.385                     
## Attntn_tw__ -0.721 -0.170  0.638              
## cndtns:A___  0.627  0.149 -0.750 -0.870       
## Dscrmntn_6:  0.381 -0.876 -0.445  0.144 -0.134
## convergence code: 0
## boundary (singular) fit: see ?isSingular
library(car)
## Loading required package: carData
Anova(mod1, type=3)
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: Choice
##                                          Chisq Df Pr(>Chisq)   
## (Intercept)                             5.6368  1   0.017588 * 
## Discrimination_ratio                    6.1526  1   0.013122 * 
## condition                               0.1334  1   0.714932   
## Attention_towards_the_inducer           7.2875  1   0.006944 **
## condition:Attention_towards_the_inducer 4.6928  1   0.030289 * 
## Discrimination_ratio:condition          0.2987  1   0.584686   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Removing the interactions that does not result significant

library(lme4)
mod1 <- glmer(formula = Choice ~  (1|`Dog`) +  (1|`Session_nr`)  + (1|`Trial_nr`)
               + Discrimination_ratio  + condition  
               + Attention_towards_the_inducer
               + condition * Attention_towards_the_inducer,
               family = binomial(logit),
               data = Data1) 
## boundary (singular) fit: see ?isSingular
summary(mod1)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## Choice ~ (1 | Dog) + (1 | Session_nr) + (1 | Trial_nr) + Discrimination_ratio +  
##     condition + Attention_towards_the_inducer + condition * Attention_towards_the_inducer
##    Data: Data1
## 
##      AIC      BIC   logLik deviance df.resid 
##    417.6    451.0   -200.8    401.6      471 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -6.4470  0.1587  0.3055  0.4784  0.9296 
## 
## Random effects:
##  Groups     Name        Variance  Std.Dev. 
##  Session_nr (Intercept) 7.730e-02 2.780e-01
##  Trial_nr   (Intercept) 6.313e-10 2.513e-05
##  Dog        (Intercept) 6.886e-02 2.624e-01
## Number of obs: 479, groups:  Session_nr, 25; Trial_nr, 11; Dog, 8
## 
## Fixed effects:
##                                                Estimate Std. Error z value
## (Intercept)                                      1.5030     0.6296   2.387
## Discrimination_ratio6                           -1.1068     0.2648  -4.180
## conditionsmaller                                -0.0993     0.6959  -0.143
## Attention_towards_the_inducer                    2.3465     0.8750   2.682
## conditionsmaller:Attention_towards_the_inducer  -2.1421     1.0054  -2.131
##                                                Pr(>|z|)    
## (Intercept)                                     0.01699 *  
## Discrimination_ratio6                          2.91e-05 ***
## conditionsmaller                                0.88652    
## Attention_towards_the_inducer                   0.00733 ** 
## conditionsmaller:Attention_towards_the_inducer  0.03312 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Dscr_6 cndtns Att___
## Dscrmntn_r6 -0.220                     
## condtnsmllr -0.821 -0.027              
## Attntn_tw__ -0.849 -0.090  0.789       
## cndtns:A___  0.738  0.065 -0.912 -0.864
## convergence code: 0
## boundary (singular) fit: see ?isSingular
library(car)
Anova(mod1, type=3)
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: Choice
##                                           Chisq Df Pr(>Chisq)    
## (Intercept)                              5.6977  1   0.016987 *  
## Discrimination_ratio                    17.4761  1  2.909e-05 ***
## condition                                0.0204  1   0.886524    
## Attention_towards_the_inducer            7.1914  1   0.007325 ** 
## condition:Attention_towards_the_inducer  4.5397  1   0.033117 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Running a binomial logistic regression model assessing the effect of discrimination ratio, condition, and attention towards the inducer on dogs’ choices in the test presentations, where where both stimuli contained eight food pieces

library("readxl")
Data2 <- read_excel("~/Desktop/Data2.xlsx", 
    col_types = c("text", "text", "text", 
        "text", "numeric", "numeric"))

library(lme4)
mod2 <- glmer(formula = Choice ~  (1|`Dog`) +  (1|`Session_nr`)  + (1|`Trial_nr`)
               + Condition  
               + Attention_towards_the_inducer
               + Condition * Attention_towards_the_inducer,
               family = binomial(logit),
               data = Data2) 
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.0036395 (tol = 0.002, component 1)
summary(mod2)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: Choice ~ (1 | Dog) + (1 | Session_nr) + (1 | Trial_nr) + Condition +  
##     Attention_towards_the_inducer + Condition * Attention_towards_the_inducer
##    Data: Data2
## 
##      AIC      BIC   logLik deviance df.resid 
##    310.8    335.3   -148.4    296.8      239 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.9527 -1.0460  0.5338  0.6698  1.0997 
## 
## Random effects:
##  Groups     Name        Variance  Std.Dev. 
##  Session_nr (Intercept) 2.691e-07 0.0005188
##  Trial_nr   (Intercept) 7.600e-02 0.2756768
##  Dog        (Intercept) 2.936e-07 0.0005418
## Number of obs: 246, groups:  Session_nr, 25; Trial_nr, 9; Dog, 8
## 
## Fixed effects:
##                                                Estimate Std. Error z value
## (Intercept)                                      1.3245     0.7344   1.803
## Conditionsmaller                                -0.3757     0.8702  -0.432
## Attention_towards_the_inducer                   -0.1292     0.9125  -0.142
## Conditionsmaller:Attention_towards_the_inducer  -0.8094     1.1368  -0.712
##                                                Pr(>|z|)  
## (Intercept)                                      0.0713 .
## Conditionsmaller                                 0.6660  
## Attention_towards_the_inducer                    0.8874  
## Conditionsmaller:Attention_towards_the_inducer   0.4764  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Cndtns Att___
## Condtnsmllr -0.831              
## Attntn_tw__ -0.943  0.795       
## Cndtns:A___  0.756 -0.934 -0.803
## convergence code: 0
## Model failed to converge with max|grad| = 0.0036395 (tol = 0.002, component 1)
library(car)
Anova(mod2, type=3)
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: Choice
##                                          Chisq Df Pr(>Chisq)  
## (Intercept)                             3.2526  1    0.07131 .
## Condition                               0.1863  1    0.66599  
## Attention_towards_the_inducer           0.0200  1    0.88745  
## Condition:Attention_towards_the_inducer 0.5070  1    0.47644  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Removing the interaction that does not result significant

library(lme4)
mod2 <- glmer(formula = Choice ~  (1|`Dog`) +  (1|`Session_nr`)  + (1|`Trial_nr`)
               + Condition  
               + Attention_towards_the_inducer,
               family = binomial(logit),
               data = Data2) 
## boundary (singular) fit: see ?isSingular
summary(mod2)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: Choice ~ (1 | Dog) + (1 | Session_nr) + (1 | Trial_nr) + Condition +  
##     Attention_towards_the_inducer
##    Data: Data2
## 
##      AIC      BIC   logLik deviance df.resid 
##    309.3    330.3   -148.6    297.3      240 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2737 -1.0722  0.5461  0.6948  1.0441 
## 
## Random effects:
##  Groups     Name        Variance  Std.Dev. 
##  Session_nr (Intercept) 5.546e-08 0.0002355
##  Trial_nr   (Intercept) 7.408e-02 0.2721781
##  Dog        (Intercept) 1.144e-10 0.0000107
## Number of obs: 246, groups:  Session_nr, 25; Trial_nr, 9; Dog, 8
## 
## Fixed effects:
##                               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                     1.7319     0.4905   3.531 0.000414 ***
## Conditionsmaller               -0.9596     0.3135  -3.061 0.002204 ** 
## Attention_towards_the_inducer  -0.6604     0.5480  -1.205 0.228147    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Cndtns
## Condtnsmllr -0.556       
## Attntn_tw__ -0.867  0.248
## convergence code: 0
## boundary (singular) fit: see ?isSingular
library(car)
Anova(mod2, type=3)
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: Choice
##                                 Chisq Df Pr(>Chisq)    
## (Intercept)                   12.4661  1  0.0004144 ***
## Condition                      9.3714  1  0.0022040 ** 
## Attention_towards_the_inducer  1.4524  1  0.2281470    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Running a binomial logistic regression model assessing the effect of discrimination ratio, condition, and attention towards the inducer on dogs’ choices in the test presentations, where discriminations of either 8 vs 11 or 8 vs 16 were presented

library("readxl")
Data3 <- read_excel(("~/Desktop/Data3.xlsx"), 
col_types = c("text", "text", "text", 
        "text", "text", "numeric", "numeric"))

library(lme4)
mod3 <- glmer(formula = Choice ~  (1|`Dog`) +  (1|`Session_nr`)  + (1|`Trial_nr`)
               + Discrimination_ratio  + Condition  
               + Attention_towards_the_inducer
               + Condition * Attention_towards_the_inducer
               + Condition * Discrimination_ratio,
               family = binomial(logit),
               data = Data3) 


summary(mod3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## Choice ~ (1 | Dog) + (1 | Session_nr) + (1 | Trial_nr) + Discrimination_ratio +  
##     Condition + Attention_towards_the_inducer + Condition * Attention_towards_the_inducer +  
##     Condition * Discrimination_ratio
##    Data: Data3
## 
##      AIC      BIC   logLik deviance df.resid 
##    351.4    389.0   -166.7    333.4      471 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -9.1827  0.0727  0.2640  0.3846  1.3047 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  Session_nr (Intercept) 0.1772   0.4210  
##  Trial_nr   (Intercept) 0.2318   0.4814  
##  Dog        (Intercept) 0.2286   0.4782  
## Number of obs: 480, groups:  Session_nr, 25; Trial_nr, 13; Dog, 8
## 
## Fixed effects:
##                                                Estimate Std. Error z value
## (Intercept)                                      1.4052     0.6660   2.110
## Discrimination_ratio16                           1.9532     0.4066   4.804
## Conditionsmaller                                 0.2654     0.9102   0.292
## Attention_towards_the_inducer                   -1.0879     0.7558  -1.439
## Conditionsmaller:Attention_towards_the_inducer   1.5611     1.2220   1.277
## Discrimination_ratio16:Conditionsmaller          1.2927     1.1094   1.165
##                                                Pr(>|z|)    
## (Intercept)                                      0.0349 *  
## Discrimination_ratio16                         1.55e-06 ***
## Conditionsmaller                                 0.7706    
## Attention_towards_the_inducer                    0.1500    
## Conditionsmaller:Attention_towards_the_inducer   0.2014    
## Discrimination_ratio16:Conditionsmaller          0.2439    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Dsc_16 Cndtns Att___ C:A___
## Dscrmntn_16 -0.046                            
## Condtnsmllr -0.633  0.029                     
## Attntn_tw__ -0.864 -0.148  0.620              
## Cndtns:A___  0.528  0.101 -0.903 -0.600       
## Dscrmn_16:C  0.037 -0.331 -0.124  0.042 -0.015
library(car)
Anova(mod3, type=3)
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: Choice
##                                           Chisq Df Pr(>Chisq)    
## (Intercept)                              4.4511  1    0.03488 *  
## Discrimination_ratio                    23.0804  1  1.554e-06 ***
## Condition                                0.0850  1    0.77061    
## Attention_towards_the_inducer            2.0717  1    0.15005    
## Condition:Attention_towards_the_inducer  1.6319  1    0.20144    
## Discrimination_ratio:Condition           1.3577  1    0.24394    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Removing the interactions that do not result significant

library(lme4)
mod3 <- glmer(formula = Choice ~  (1|`Dog`) +  (1|`Session_nr`)  + (1|`Trial_nr`)
               + Discrimination_ratio  + Condition  
               + Attention_towards_the_inducer
               + Condition * Attention_towards_the_inducer,
               family = binomial(logit),
               data = Data3) 

summary(mod3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## Choice ~ (1 | Dog) + (1 | Session_nr) + (1 | Trial_nr) + Discrimination_ratio +  
##     Condition + Attention_towards_the_inducer + Condition * Attention_towards_the_inducer
##    Data: Data3
## 
##      AIC      BIC   logLik deviance df.resid 
##    351.0    384.4   -167.5    335.0      472 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.8842  0.1138  0.2483  0.3605  1.3499 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  Session_nr (Intercept) 0.1907   0.4366  
##  Trial_nr   (Intercept) 0.2083   0.4564  
##  Dog        (Intercept) 0.2346   0.4844  
## Number of obs: 480, groups:  Session_nr, 25; Trial_nr, 13; Dog, 8
## 
## Fixed effects:
##                                                Estimate Std. Error z value
## (Intercept)                                      1.3724     0.6743   2.035
## Discrimination_ratio16                           2.1841     0.3787   5.767
## Conditionsmaller                                 0.4435     0.9015   0.492
## Attention_towards_the_inducer                   -1.1430     0.7689  -1.487
## Conditionsmaller:Attention_towards_the_inducer   1.6023     1.2221   1.311
##                                                Pr(>|z|)    
## (Intercept)                                      0.0418 *  
## Discrimination_ratio16                         8.08e-09 ***
## Conditionsmaller                                 0.6227    
## Attention_towards_the_inducer                    0.1371    
## Conditionsmaller:Attention_towards_the_inducer   0.1898    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Dsc_16 Cndtns Att___
## Dscrmntn_16 -0.011                     
## Condtnsmllr -0.640 -0.059              
## Attntn_tw__ -0.874 -0.138  0.647       
## Cndtns:A___  0.541  0.100 -0.915 -0.611
library(car)
Anova(mod3, type=3)
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: Choice
##                                           Chisq Df Pr(>Chisq)    
## (Intercept)                              4.1424  1    0.04182 *  
## Discrimination_ratio                    33.2549  1  8.083e-09 ***
## Condition                                0.2421  1    0.62271    
## Attention_towards_the_inducer            2.2099  1    0.13713    
## Condition:Attention_towards_the_inducer  1.7191  1    0.18981    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
mod3 <- glmer(formula = Choice ~  (1|`Dog`) +  (1|`Session_nr`)  + (1|`Trial_nr`)
               + Discrimination_ratio  + Condition  
               + Attention_towards_the_inducer,
               family = binomial(logit),
               data = Data3) 
summary(mod3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## Choice ~ (1 | Dog) + (1 | Session_nr) + (1 | Trial_nr) + Discrimination_ratio +  
##     Condition + Attention_towards_the_inducer
##    Data: Data3
## 
##      AIC      BIC   logLik deviance df.resid 
##    350.8    380.0   -168.4    336.8      473 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.9481  0.1208  0.2518  0.3577  1.2306 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  Session_nr (Intercept) 0.1815   0.4260  
##  Trial_nr   (Intercept) 0.1779   0.4218  
##  Dog        (Intercept) 0.2585   0.5084  
## Number of obs: 480, groups:  Session_nr, 25; Trial_nr, 13; Dog, 8
## 
## Fixed effects:
##                               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                     0.9145     0.5591   1.636    0.102    
## Discrimination_ratio16          2.1474     0.3722   5.769 7.98e-09 ***
## Conditionsmaller                1.5468     0.3505   4.414 1.02e-05 ***
## Attention_towards_the_inducer  -0.5501     0.6052  -0.909    0.363    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Dsc_16 Cndtns
## Dscrmntn_16 -0.074              
## Condtnsmllr -0.358  0.090       
## Attntn_tw__ -0.813 -0.102  0.190
Anova(mod3, type=3)
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: Choice
##                                 Chisq Df Pr(>Chisq)    
## (Intercept)                    2.6756  1     0.1019    
## Discrimination_ratio          33.2793  1  7.983e-09 ***
## Condition                     19.4810  1  1.016e-05 ***
## Attention_towards_the_inducer  0.8264  1     0.3633    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1