JDM Lab Logo

1 INTRODUZIONE E SUMMARY RISULTATI PRINCIPALI

2 STATISTICHE DESCRITTIVE

library(tidyverse)
library(sandwich)
library(gtsummary)
library(flextable)
library(tables)
# library(openxlsx)

# Change directory to folder where folder with files is located
# library(readbulk) dsSIM <- read_bulk(directory = 'csv_guide', extension =
# '.csv')

# write.table(dsSIM, file = 'dsSIM.csv', sep = ',', na = ' ', dec = '.',
# row.names = FALSE, col.names = FALSE)

## Upload of dataset from PRE-TEST
dsPRE <- rio::import(file = "UDUL_Questionario+PRE_January+22,+2024_18.38.xlsx",
    which = 1L, skip = 1L)

## I prepare the dataset from the PRE-TEST for the analyses Delete incomplete
## responses
dsPRE_ok <- subset(dsPRE, Finished1 == 1)
## Delete participants with multiple complete responses
dsPRE_ok <- subset(dsPRE_ok, Code3 != "en710os")
dsPRE_ok <- subset(dsPRE_ok, Code3 != "gr383ot")
dsPRE_ok <- subset(dsPRE_ok, Code3 != "go020be")
dsPRE_ok <- subset(dsPRE_ok, Code3 != "jo399io")
dsPRE_ok <- subset(dsPRE_ok, Code3 != "va203on")
dsPRE_ok <- subset(dsPRE_ok, Code3 != "en877zo")
dsPRE_ok <- subset(dsPRE_ok, Code3 != "pa753an")
dsPRE_ok1 <- dsPRE_ok %>%
    select(!c(Code1, Code21))

## Upload of dataset from POST-TEST
dsPOST <- rio::import(file = "UDUL_Questionario+POST_January+22,+2024_19.38.xlsx",
    which = 1L, skip = 1L)

## I prepare the dataset from the PRE-TEST for the analyses Delete incomplete
## responses
dsPOST_ok <- subset(dsPOST, Finished2 == 1)
dsPOST_ok <- subset(dsPOST_ok, Code3 != "va203on")
dsPOST_ok1 <- dsPOST_ok %>%
    select(!c(Code2, Code22))

## Upload of dataset with driving conditions (under the influence vs. control)
dsSIM <- read.table(file = "dsSIM.csv", sep = ",", dec = ".", header = TRUE)


## Select only Code and Test dsSIM1 <- dsSIM %>% select(Code3,Test)

## Create full datset
dsPRE_POST <- left_join(dsPRE_ok1, dsPOST_ok1, by = "Code3")
dsPRE_POST_ok <- left_join(dsPRE_POST, dsSIM, by = "Code3")
## Delete training sessions
dsPRE_POST_ok <- subset(dsPRE_POST_ok, Test != "Training")
library(tidyr)
library(ggplot2)
library(ggthemes)
## Tranform Gender into a factor with labels
dsPRE_POST_ok$Genere <- factor(dsPRE_POST_ok$Genere1, levels = c(1, 2, 3, 4), labels = c("Uomo",
    "Donna", "Altro", "Preferisco non risponder"))

## Check that Age is 18 to 24 years summary(dsPRE_POST_ok$Età1) Delete
## participants above 24 years
dsPRE_POST_ok <- subset(dsPRE_POST_ok, Età1 <= 24)
dsPRE_POST_ok$Età <- dsPRE_POST_ok$Età1

## Transform Education into a factor with labels
dsPRE_POST_ok$Istruzione <- factor(dsPRE_POST_ok$Istr1, levels = c(1, 2, 3, 4), labels = c("Scuola media",
    "Scuola superiore", "Laurea triennale", "Laurea magistrale"))

## Transform Work into a factor with labels
dsPRE_POST_ok$Lavoro <- factor(dsPRE_POST_ok$Profes1, levels = c(1, 2, 3, 4), labels = c("Studente",
    "Occupato", "Disoccupato", "In cerca di occupazione"))

## Transform Residence into a factor with labels
dsPRE_POST_ok$Residenza <- factor(dsPRE_POST_ok$Resid1, levels = c(1, 2), labels = c("Comune PD",
    "Provincia PD"))

## Clean answers to the question about the place where they live
dsPRE_POST_ok$Comune <- dsPRE_POST_ok$Resid2

## Transform Driving licence into a factor with labels CHECK WHETHER THE LABELS
## ARE CODED CORRECTLY It looks strange that there are so many 4!
dsPRE_POST_ok$Patente <- factor(dsPRE_POST_ok$Patente1, levels = c(1, 2, 3, 4, 5),
    labels = c("No patente", "A", "B1", "B", "Altro"))

## Transform the first question on Fines into a factor with labels
dsPRE_POST_ok$Sanzioni_alcool <- factor(dsPRE_POST_ok$sanz11, levels = c(1, 2, 3,
    4), labels = c("0,00 g/l", "0,2 g/l", "0,5 g/l", "0,8 g/l"))

## Transform the second question on Fines into a factor with labels
dsPRE_POST_ok$Sanzioni_neo_patentati <- factor(dsPRE_POST_ok$sanz21, levels = c(1,
    2, 3), labels = c("Multa €164-664 + 10 punti", "Multa €708-2883.34 + 20 punti",
    "Nessuna sanzione"))

## Recode to have the correct answer vs. the incorrect ones
dsPRE_POST_ok$Sanzioni_neo_patentati2 <- car::recode(dsPRE_POST_ok$sanz21, "1=1;2:3=0")


## Compute average score for Risk Perception in the before the driving test
dsPRE_POST_ok$Percezione_rischio <- rowMeans(dsPRE_POST_ok[, c("RP_scale_11", "RP_scale_21",
    "RP_scale_31", "RP_scale_41", "RP_scale_51")], na.rm = TRUE)

## Cronbach's alfa
library(psy)
ALFArisk <- cronbach(cbind(dsPRE_POST_ok[, c("RP_scale_11", "RP_scale_21", "RP_scale_31",
    "RP_scale_41", "RP_scale_51")]))
ALFArisk
$sample.size
[1] 345

$number.of.items
[1] 5

$alpha
[1] 0.81679967
## Compute average score for Vankov scale in the before the driving test
dsPRE_POST_ok$Vankov <- rowMeans(dsPRE_POST_ok[, c("DUI_int1", "Inst_att1", "Per_cont1",
    "Self_eff1", "Des_norm1", "Sub_norm1", "Aff_att1")], na.rm = TRUE)

## Cronbach's alfa
library(psy)
ALFAvankov <- cronbach(cbind(dsPRE_POST_ok[, c("DUI_int1", "Inst_att1", "Per_cont1",
    "Self_eff1", "Des_norm1", "Sub_norm1", "Aff_att1")]))
ALFAvankov
$sample.size
[1] 345

$number.of.items
[1] 7

$alpha
[1] 0.3365807
## Compute average score for Dejoy scale (involvement) in the before the
## driving test
dsPRE_POST_ok$Dejoy_coinvolgimento <- rowMeans(dsPRE_POST_ok[, c("involv_DJ_11",
    "involv_DJ_21", "involv_DJ_31", "involv_DJ_41", "involv_DJ_51", "involv_DJ_61",
    "involv_DJ_71", "involv_DJ_81", "involv_DJ_91", "involv_DJ_101")], na.rm = TRUE)

## Cronbach's alfa
library(psy)
ALFAdejoyC <- cronbach(cbind(dsPRE_POST_ok[, c("involv_DJ_11", "involv_DJ_21", "involv_DJ_31",
    "involv_DJ_41", "involv_DJ_51", "involv_DJ_61", "involv_DJ_71", "involv_DJ_81",
    "involv_DJ_91", "involv_DJ_101")]))
ALFAdejoyC
$sample.size
[1] 345

$number.of.items
[1] 10

$alpha
[1] 0.89208947
## Compute average score for Dejoy scale (gravity) in the before the driving
## test
dsPRE_POST_ok$Dejoy_gravità <- rowMeans(dsPRE_POST_ok[, c("grav_DJ_11", "grav_DJ_21",
    "grav_DJ_31", "grav_DJ_41", "grav_DJ_51", "grav_DJ_61", "grav_DJ_71", "grav_DJ_81",
    "grav_DJ_91", "grav_DJ_101")], na.rm = TRUE)

## Cronbach's alfa
library(psy)
ALFAdejoyG <- cronbach(cbind(dsPRE_POST_ok[, c("grav_DJ_11", "grav_DJ_21", "grav_DJ_31",
    "grav_DJ_41", "grav_DJ_51", "grav_DJ_61", "grav_DJ_71", "grav_DJ_81", "grav_DJ_91",
    "grav_DJ_101")]))
ALFAdejoyG
$sample.size
[1] 345

$number.of.items
[1] 10

$alpha
[1] 0.80781793
## Compute average score for Dejoy scale (control) in the before the driving
## test
dsPRE_POST_ok$Dejoy_controllo <- rowMeans(dsPRE_POST_ok[, c("contol_DJ_11", "contol_DJ_21",
    "contol_DJ_31", "contol_DJ_41", "contol_DJ_51", "contol_DJ_61", "contol_DJ_71",
    "contol_DJ_81", "contol_DJ_91", "contol_DJ_101")], na.rm = TRUE)

## Cronbach's alfa
library(psy)
ALFAdejoyCon <- cronbach(cbind(dsPRE_POST_ok[, c("contol_DJ_11", "contol_DJ_21",
    "contol_DJ_31", "contol_DJ_41", "contol_DJ_51", "contol_DJ_61", "contol_DJ_71",
    "contol_DJ_81", "contol_DJ_91", "contol_DJ_101")]))
ALFAdejoyCon
$sample.size
[1] 345

$number.of.items
[1] 10

$alpha
[1] 0.6351326
## Compute average score for Risk Perception in after the driving test
dsPRE_POST_ok$Percezione_rischio2 <- rowMeans(dsPRE_POST_ok[, c("RP_scale_12", "RP_scale_22",
    "RP_scale_32", "RP_scale_42", "RP_scale_52")], na.rm = TRUE)

## Cronbach's alfa
library(psy)
ALFArisk2 <- cronbach(cbind(dsPRE_POST_ok[, c("RP_scale_12", "RP_scale_22", "RP_scale_32",
    "RP_scale_42", "RP_scale_52")]))
ALFArisk2
$sample.size
[1] 223

$number.of.items
[1] 5

$alpha
[1] 0.89850369
## Compute average score for Vankov scale in after the driving test
dsPRE_POST_ok$Vankov2 <- rowMeans(dsPRE_POST_ok[, c("DUI_int2", "Inst_att2", "Per_cont2",
    "Self_eff2", "Des_norm2", "Sub_norm2", "Aff_att2")], na.rm = TRUE)
## Cronbach's alfa
library(psy)
ALFAvankov2 <- cronbach(cbind(dsPRE_POST_ok[, c("DUI_int2", "Inst_att2", "Per_cont2",
    "Self_eff2", "Des_norm2", "Sub_norm2", "Aff_att2")]))
ALFAvankov2
$sample.size
[1] 223

$number.of.items
[1] 7

$alpha
[1] 0.48037544
## Compute average score for Dejoy scale (involvement) in after the driving
## test
dsPRE_POST_ok$Dejoy_coinvolgimento2 <- rowMeans(dsPRE_POST_ok[, c("involv_DJ_12",
    "involv_DJ_22", "involv_DJ_32", "involv_DJ_42", "involv_DJ_52", "involv_DJ_62",
    "involv_DJ_72", "involv_DJ_82", "involv_DJ_92", "involv_DJ_102")], na.rm = TRUE)

## Cronbach's alfa
library(psy)
ALFAdejoyC2 <- cronbach(cbind(dsPRE_POST_ok[, c("involv_DJ_12", "involv_DJ_22", "involv_DJ_32",
    "involv_DJ_42", "involv_DJ_52", "involv_DJ_62", "involv_DJ_72", "involv_DJ_82",
    "involv_DJ_92", "involv_DJ_102")]))
ALFAdejoyC2
$sample.size
[1] 223

$number.of.items
[1] 10

$alpha
[1] 0.88494521
## Compute average score for Dejoy scale (gravity) in the before the driving
## test
dsPRE_POST_ok$Dejoy_gravità2 <- rowMeans(dsPRE_POST_ok[, c("grav_DJ_12", "grav_DJ_22",
    "grav_DJ_32", "grav_DJ_42", "grav_DJ_52", "grav_DJ_62", "grav_DJ_72", "grav_DJ_82",
    "grav_DJ_92", "grav_DJ_102")], na.rm = TRUE)

## Cronbach's alfa
library(psy)
ALFAdejoyG2 <- cronbach(cbind(dsPRE_POST_ok[, c("grav_DJ_12", "grav_DJ_22", "grav_DJ_32",
    "grav_DJ_42", "grav_DJ_52", "grav_DJ_62", "grav_DJ_72", "grav_DJ_82", "grav_DJ_92",
    "grav_DJ_102")]))
ALFAdejoyG2
$sample.size
[1] 223

$number.of.items
[1] 10

$alpha
[1] 0.77687051
## Compute average score for Dejoy scale (control) in the before the driving
## test
dsPRE_POST_ok$Dejoy_controllo2 <- rowMeans(dsPRE_POST_ok[, c("contol_DJ_12", "contol_DJ_22",
    "contol_DJ_32", "contol_DJ_42", "contol_DJ_52", "contol_DJ_62", "contol_DJ_72",
    "contol_DJ_82", "contol_DJ_92", "contol_DJ_102")], na.rm = TRUE)

## Cronbach's alfa
library(psy)
ALFAdejoyCon2 <- cronbach(cbind(dsPRE_POST_ok[, c("contol_DJ_12", "contol_DJ_22",
    "contol_DJ_32", "contol_DJ_42", "contol_DJ_52", "contol_DJ_62", "contol_DJ_72",
    "contol_DJ_82", "contol_DJ_92", "contol_DJ_102")]))
ALFAdejoyCon2
$sample.size
[1] 223

$number.of.items
[1] 10

$alpha
[1] 0.6480293

2.1 Campione

dsPRE_POST_ok2 <- subset(dsPRE_POST_ok, Vankov2 != "NaN")
dsPRE_POST_ok2$Test <- factor(dsPRE_POST_ok2$Test)
library(table1)
T1 <- table1(~Genere + Età + Istruzione + Lavoro + Residenza + Patente + Sanzioni_alcool +
    Sanzioni_neo_patentati + game1 + Fr_alcol1 + M_drink1 + Fam_guida1 | Test, data = dsPRE_POST_ok2)
T1
Guida da sobrio
(N=92)
Guida da ubriaco
(N=131)
Overall
(N=223)
Genere
Uomo 45 (48.9%) 83 (63.4%) 128 (57.4%)
Donna 47 (51.1%) 48 (36.6%) 95 (42.6%)
Altro 0 (0%) 0 (0%) 0 (0%)
Preferisco non risponder 0 (0%) 0 (0%) 0 (0%)
Età
Mean (SD) 18.6 (1.20) 18.9 (1.47) 18.8 (1.37)
Median [Min, Max] 18.0 [18.0, 24.0] 18.0 [18.0, 24.0] 18.0 [18.0, 24.0]
Istruzione
Scuola media 54 (58.7%) 77 (58.8%) 131 (58.7%)
Scuola superiore 35 (38.0%) 52 (39.7%) 87 (39.0%)
Laurea triennale 3 (3.3%) 2 (1.5%) 5 (2.2%)
Laurea magistrale 0 (0%) 0 (0%) 0 (0%)
Lavoro
Studente 79 (85.9%) 99 (75.6%) 178 (79.8%)
Occupato 10 (10.9%) 22 (16.8%) 32 (14.3%)
Disoccupato 0 (0%) 5 (3.8%) 5 (2.2%)
In cerca di occupazione 3 (3.3%) 5 (3.8%) 8 (3.6%)
Residenza
Comune PD 25 (27.2%) 30 (22.9%) 55 (24.7%)
Provincia PD 67 (72.8%) 101 (77.1%) 168 (75.3%)
Patente
No patente 0 (0%) 1 (0.8%) 1 (0.4%)
A 0 (0%) 1 (0.8%) 1 (0.4%)
B1 5 (5.4%) 7 (5.3%) 12 (5.4%)
B 86 (93.5%) 119 (90.8%) 205 (91.9%)
Altro 1 (1.1%) 3 (2.3%) 4 (1.8%)
Sanzioni_alcool
0,00 g/l 85 (92.4%) 125 (95.4%) 210 (94.2%)
0,2 g/l 4 (4.3%) 4 (3.1%) 8 (3.6%)
0,5 g/l 3 (3.3%) 2 (1.5%) 5 (2.2%)
0,8 g/l 0 (0%) 0 (0%) 0 (0%)
Sanzioni_neo_patentati
Multa €164-664 + 10 punti 61 (66.3%) 82 (62.6%) 143 (64.1%)
Multa €708-2883.34 + 20 punti 30 (32.6%) 48 (36.6%) 78 (35.0%)
Nessuna sanzione 1 (1.1%) 1 (0.8%) 2 (0.9%)
game1
Mean (SD) 2.07 (1.18) 2.50 (1.33) 2.32 (1.29)
Median [Min, Max] 2.00 [1.00, 5.00] 2.00 [1.00, 5.00] 2.00 [1.00, 5.00]
Fr_alcol1
Mean (SD) 2.30 (0.899) 2.36 (0.895) 2.34 (0.895)
Median [Min, Max] 2.00 [1.00, 4.00] 2.00 [1.00, 5.00] 2.00 [1.00, 5.00]
M_drink1
Mean (SD) 2.04 (0.851) 2.03 (0.632) 2.04 (0.728)
Median [Min, Max] 2.00 [1.00, 5.00] 2.00 [1.00, 4.00] 2.00 [1.00, 5.00]
Fam_guida1
Mean (SD) 1.38 (0.510) 1.41 (0.567) 1.40 (0.543)
Median [Min, Max] 1.00 [1.00, 3.00] 1.00 [1.00, 3.00] 1.00 [1.00, 3.00]

2.2 Misure di percezione del rischio

levels(dsPRE_POST_ok2$Test)[match("Guida da ubriaco", levels(dsPRE_POST_ok2$Test))] <- "Driving under the influence"
levels(dsPRE_POST_ok2$Test)[match("Guida da sobrio", levels(dsPRE_POST_ok2$Test))] <- "Driving sober"
T2 <- table1(~Percezione_rischio + Percezione_rischio2 + Vankov + Vankov2 + Dejoy_coinvolgimento +
    Dejoy_coinvolgimento2 + Dejoy_gravità + Dejoy_gravità2 + Dejoy_controllo +
    Dejoy_controllo2 | Test, data = dsPRE_POST_ok2, overall = F)
T2
Driving sober
(N=92)
Driving under the influence
(N=131)
Percezione_rischio
Mean (SD) 9.44 (0.888) 9.27 (0.905)
Median [Min, Max] 10.0 [5.00, 10.0] 9.60 [6.00, 10.0]
Percezione_rischio2
Mean (SD) 9.04 (1.46) 9.19 (1.40)
Median [Min, Max] 9.80 [3.00, 10.0] 9.80 [2.60, 10.0]
Vankov
Mean (SD) 3.64 (0.755) 3.57 (0.813)
Median [Min, Max] 3.57 [1.14, 5.43] 3.43 [1.00, 5.86]
Vankov2
Mean (SD) 3.58 (1.07) 3.68 (0.979)
Median [Min, Max] 3.43 [1.00, 9.00] 3.71 [1.00, 8.43]
Dejoy_coinvolgimento
Mean (SD) 2.43 (0.880) 2.40 (0.921)
Median [Min, Max] 2.40 [1.00, 5.00] 2.20 [1.00, 5.00]
Dejoy_coinvolgimento2
Mean (SD) 2.85 (0.877) 2.70 (0.813)
Median [Min, Max] 2.90 [1.00, 5.00] 2.70 [1.00, 5.00]
Dejoy_gravità
Mean (SD) 3.82 (0.548) 3.77 (0.569)
Median [Min, Max] 3.80 [1.60, 5.00] 3.80 [1.30, 5.00]
Dejoy_gravità2
Mean (SD) 3.83 (0.598) 3.78 (0.504)
Median [Min, Max] 3.80 [2.40, 5.00] 3.80 [2.40, 5.00]
Dejoy_controllo
Mean (SD) 3.26 (0.559) 3.27 (0.569)
Median [Min, Max] 3.20 [1.50, 5.00] 3.20 [2.00, 5.00]
Dejoy_controllo2
Mean (SD) 3.24 (0.558) 3.26 (0.584)
Median [Min, Max] 3.10 [2.00, 5.00] 3.30 [1.00, 4.60]

2.3 Illusione del controllo e bias ottimistico

dsPRE_POST_ok2$IllusionC1 <- rowMeans(dsPRE_POST_ok2[, c("ill_co11", "ill_co12")],
    na.rm = TRUE)
dsPRE_POST_ok2$IllusionC2 <- rowMeans(dsPRE_POST_ok2[, c("ill_co21", "ill_co22")],
    na.rm = TRUE)
dsPRE_POST_ok2$OptimismB1 <- rowMeans(dsPRE_POST_ok2[, c("Ob11", "Ob21")], na.rm = TRUE)
dsPRE_POST_ok2$OptimismB2 <- rowMeans(dsPRE_POST_ok2[, c("Ob21", "Ob22")], na.rm = TRUE)

dsPRE_POST_ok2$game_cat <- factor(dsPRE_POST_ok2$game1, levels = c(1, 2, 3, 4, 5),
    labels = c("Never", "Very rarely", "Only 1/2 times a week", "3/4 times a week",
        "Very often/every day"))
dsPRE_POST_ok2$FrAlcohol_cat <- factor(dsPRE_POST_ok2$Fr_alcol1, levels = c(1, 2,
    3, 4, 5, 6), labels = c("Never", "Once", "2/4 times", "2/3 times a week", "5/6 times a week",
    "6 or more times a week"))
dsPRE_POST_ok2$NDrink_cat <- factor(dsPRE_POST_ok2$M_drink1, levels = c(1, 2, 3,
    4, 5, 6), labels = c("None", "1/2 drinks", "3/4 drinks", "5/6 drinks", "7/9 drinks",
    "10 or more drinks"))
dsPRE_POST_ok2$FamGuida_cat <- factor(dsPRE_POST_ok2$Fam_guida1, levels = c(1, 2,
    3, 4), labels = c("Never", "Sometimes", "Often", "Very often"))

dsPRE_POST_ok2$Passed <- factor(dsPRE_POST_ok2$Passed, levels = c(0, 1), labels = c("not passed",
    "passed"))

library(lubridate)
dsPRE_POST_ok2$Duration2 <- ms(dsPRE_POST_ok2$Duration)
dsPRE_POST_ok2$Duration3 <- as.numeric(dsPRE_POST_ok2$Duration2)
dsPRE_POST_ok2$Durata <- dsPRE_POST_ok2$Duration3/60

T3 <- table1(~Percezione_rischio + Percezione_rischio2 + Dejoy_coinvolgimento + Dejoy_coinvolgimento2 +
    Dejoy_gravità + Dejoy_gravità2 + IllusionC1 + IllusionC2 + OptimismB1 + OptimismB2 +
    Ob31 + Ob32 + game_cat + FrAlcohol_cat + NDrink_cat + FamGuida_cat | Test, data = dsPRE_POST_ok2,
    overall = F)
T3
Driving sober
(N=92)
Driving under the influence
(N=131)
Percezione_rischio
Mean (SD) 9.44 (0.888) 9.27 (0.905)
Median [Min, Max] 10.0 [5.00, 10.0] 9.60 [6.00, 10.0]
Percezione_rischio2
Mean (SD) 9.04 (1.46) 9.19 (1.40)
Median [Min, Max] 9.80 [3.00, 10.0] 9.80 [2.60, 10.0]
Dejoy_coinvolgimento
Mean (SD) 2.43 (0.880) 2.40 (0.921)
Median [Min, Max] 2.40 [1.00, 5.00] 2.20 [1.00, 5.00]
Dejoy_coinvolgimento2
Mean (SD) 2.85 (0.877) 2.70 (0.813)
Median [Min, Max] 2.90 [1.00, 5.00] 2.70 [1.00, 5.00]
Dejoy_gravità
Mean (SD) 3.82 (0.548) 3.77 (0.569)
Median [Min, Max] 3.80 [1.60, 5.00] 3.80 [1.30, 5.00]
Dejoy_gravità2
Mean (SD) 3.83 (0.598) 3.78 (0.504)
Median [Min, Max] 3.80 [2.40, 5.00] 3.80 [2.40, 5.00]
IllusionC1
Mean (SD) 1.89 (1.42) 1.86 (1.47)
Median [Min, Max] 1.00 [1.00, 7.00] 1.00 [1.00, 8.50]
IllusionC2
Mean (SD) 1.67 (1.40) 1.53 (1.07)
Median [Min, Max] 1.00 [1.00, 7.50] 1.00 [1.00, 6.00]
OptimismB1
Mean (SD) 3.41 (2.49) 3.61 (2.87)
Median [Min, Max] 3.00 [1.00, 10.0] 2.50 [1.00, 10.0]
OptimismB2
Mean (SD) 3.66 (2.44) 3.75 (2.65)
Median [Min, Max] 3.00 [1.00, 10.0] 3.00 [1.00, 10.0]
Ob31
Mean (SD) 7.28 (2.56) 6.95 (2.80)
Median [Min, Max] 8.00 [1.00, 10.0] 7.00 [1.00, 10.0]
Ob32
Mean (SD) 7.18 (2.74) 6.85 (2.95)
Median [Min, Max] 8.00 [1.00, 10.0] 7.00 [1.00, 10.0]
game_cat
Never 38 (41.3%) 35 (26.7%)
Very rarely 26 (28.3%) 42 (32.1%)
Only 1/2 times a week 19 (20.7%) 26 (19.8%)
3/4 times a week 2 (2.2%) 10 (7.6%)
Very often/every day 7 (7.6%) 18 (13.7%)
FrAlcohol_cat
Never 20 (21.7%) 25 (19.1%)
Once 31 (33.7%) 43 (32.8%)
2/4 times 34 (37.0%) 57 (43.5%)
2/3 times a week 7 (7.6%) 3 (2.3%)
5/6 times a week 0 (0%) 3 (2.3%)
6 or more times a week 0 (0%) 0 (0%)
NDrink_cat
None 21 (22.8%) 22 (16.8%)
1/2 drinks 54 (58.7%) 85 (64.9%)
3/4 drinks 11 (12.0%) 22 (16.8%)
5/6 drinks 4 (4.3%) 2 (1.5%)
7/9 drinks 2 (2.2%) 0 (0%)
10 or more drinks 0 (0%) 0 (0%)
FamGuida_cat
Never 58 (63.0%) 82 (62.6%)
Sometimes 33 (35.9%) 44 (33.6%)
Often 1 (1.1%) 5 (3.8%)
Very often 0 (0%) 0 (0%)

3 CORRELAZIONI

3.1 Solo prima prova

library(psych)
pairs.panels(dsPRE_POST_ok2[, c("Percezione_rischio", 
                                "Dejoy_coinvolgimento","Dejoy_gravità",
                                "IllusionC1","OptimismB1","Ob31")],
             smooth = TRUE,      # If TRUE, draws loess smooths
             scale = FALSE,      # If TRUE, scales the correlation text font
             density = TRUE,     # If TRUE, adds density plots and histograms
             ellipses = FALSE,    # If TRUE, draws ellipses
             method = "pearson", # Correlation method (also "spearman" or "kendall")
             pch = 21,           # pch symbol
             lm = FALSE,         # If TRUE, plots linear fit rather than the LOESS (smoothed) fit
             cor = TRUE,         # If TRUE, reports correlations
             jiggle = TRUE,     # If TRUE, data points are jittered
             factor = 2,         # Jittering factor
             hist.col = 4,       # Histograms color
             stars = TRUE,       # If TRUE, adds significance level with stars
             ci = TRUE) 

3.2 Solo seconda prova - guida da sobri

Sober <- subset(dsPRE_POST_ok2,
                  Test == "Driving sober")

library(psych)
pairs.panels(Sober[, c("Percezione_rischio2", 
                                "Dejoy_coinvolgimento2","Dejoy_gravità2",
                                "IllusionC2","OptimismB2","Ob32",
                                "Durata","Wpt")],
             smooth = TRUE,      # If TRUE, draws loess smooths
             scale = FALSE,      # If TRUE, scales the correlation text font
             density = TRUE,     # If TRUE, adds density plots and histograms
             ellipses = FALSE,    # If TRUE, draws ellipses
             method = "pearson", # Correlation method (also "spearman" or "kendall")
             pch = 21,           # pch symbol
             lm = FALSE,         # If TRUE, plots linear fit rather than the LOESS (smoothed) fit
             cor = TRUE,         # If TRUE, reports correlations
             jiggle = TRUE,     # If TRUE, data points are jittered
             factor = 2,         # Jittering factor
             hist.col = 4,       # Histograms color
             stars = TRUE,       # If TRUE, adds significance level with stars
             ci = TRUE) 

3.3 Solo seconda prova - guida da ubriachi

DUI <- subset(dsPRE_POST_ok2,
                  Test == "Driving under the influence")

library(psych)
pairs.panels(DUI[, c("Percezione_rischio2", 
                                "Dejoy_coinvolgimento2","Dejoy_gravità2",
                                "IllusionC2","OptimismB2","Ob32",
                                "Durata","Wpt")],
             smooth = TRUE,      # If TRUE, draws loess smooths
             scale = FALSE,      # If TRUE, scales the correlation text font
             density = TRUE,     # If TRUE, adds density plots and histograms
             ellipses = FALSE,    # If TRUE, draws ellipses
             method = "pearson", # Correlation method (also "spearman" or "kendall")
             pch = 21,           # pch symbol
             lm = FALSE,         # If TRUE, plots linear fit rather than the LOESS (smoothed) fit
             cor = TRUE,         # If TRUE, reports correlations
             jiggle = TRUE,     # If TRUE, data points are jittered
             factor = 2,         # Jittering factor
             hist.col = 4,       # Histograms color
             stars = TRUE,       # If TRUE, adds significance level with stars
             ci = TRUE) 

4 REGRESSIONI

4.1 Percezione del rischio

library(tidyr)
dsPRE_POST_ok2$Code <- factor(dsPRE_POST_ok2$Code3)
ds_long <- reshape(dsPRE_POST_ok2, varying = list(c("Percezione_rischio", "Percezione_rischio2"),
    c("Dejoy_coinvolgimento", "Dejoy_coinvolgimento2"), c("Dejoy_gravità", "Dejoy_gravità2"),
    c("IllusionC1", "IllusionC2"), c("Ob11", "Ob21"), c("Ob31", "Ob32")), v.names = c("Percezione_rischio",
    "Dejoy_coinvolgimento", "Dejoy_gravità", "IllusionC", "OptimismB", "PoliceStop"),
    direction = "long", idvar = "Code3")

ds_long$Time <- factor(ds_long$time, levels = c(1, 2), labels = c("BASELINE", "POST"))

4.1.1 Modello 1

library(lme4)
library(lmerTest)
library(car)

M1 <- lmer(Percezione_rischio ~ Test * Time + Durata + Genere + (1 | Code), data = ds_long,
    REML = F)
Anova(M1, type = 3)
summary(M1)
Linear mixed model fit by maximum likelihood . t-tests use Satterthwaite's
  method [lmerModLmerTest]
Formula: Percezione_rischio ~ Test * Time + Durata + Genere + (1 | Code)
   Data: ds_long

     AIC      BIC   logLik deviance df.resid 
  1374.3   1407.1   -679.2   1358.3      438 

Scaled residuals: 
     Min       1Q   Median       3Q      Max 
-4.99823 -0.21691  0.20630  0.46607  1.96328 

Random effects:
 Groups   Name        Variance Std.Dev.
 Code     (Intercept) 0.52344  0.72349 
 Residual             0.81412  0.90228 
Number of obs: 446, groups:  Code, 223

Fixed effects:
                                           Estimate Std. Error         df
(Intercept)                                9.024946   0.164297 307.200405
TestDriving under the influence           -0.062303   0.159858 381.674870
TimePOST                                  -0.402174   0.133035 223.000000
Durata                                     0.045126   0.024895 223.000000
GenereDonna                                0.527508   0.133197 223.000000
TestDriving under the influence:TimePOST   0.328891   0.173573 223.000000
                                         t value              Pr(>|t|)    
(Intercept)                              54.9307 < 0.00000000000000022 ***
TestDriving under the influence          -0.3897             0.6969473    
TimePOST                                 -3.0231             0.0027950 ** 
Durata                                    1.8126             0.0712359 .  
GenereDonna                               3.9603             0.0001007 ***
TestDriving under the influence:TimePOST  1.8948             0.0594079 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) TsDuti TmPOST Durata GnrDnn
TstDrvnguti -0.674                            
TimePOST    -0.405  0.416                     
Durata      -0.541  0.132  0.000              
GenereDonna -0.479  0.136  0.000  0.134       
TDuti:TPOST  0.310 -0.543 -0.766  0.000  0.000

4.1.1.1 Confidence intervals

confint(M1, level = 0.95)
                                                 2.5 %       97.5 %
.sig01                                    0.5901721386  0.855294223
.sigma                                    0.8246072164  0.992968249
(Intercept)                               8.7019192672  9.347973538
TestDriving under the influence          -0.3764102346  0.251804446
TimePOST                                 -0.6640436839 -0.140304142
Durata                                   -0.0038791521  0.094130431
GenereDonna                               0.2653176447  0.789697983
TestDriving under the influence:TimePOST -0.0127748354  0.670557776

4.1.1.2 Standardized coefficients

stdCoef.merMod <- function(object) {
    sdy <- sd(getME(object, "y"))
    sdx <- apply(getME(object, "X"), 2, sd)
    sc <- fixef(object) * sdx/sdy
    se.fixef <- coef(summary(object))[, "Std. Error"]
    se <- se.fixef * sdx/sdy
    return(data.frame(stdcoef = sc, stdse = se))
}
stdCoef.merMod(M1)
library(interactions)
library(jtools)
FY <- cat_plot(M1, pred = Test, modx = Time, interval = TRUE, plot.points = TRUE,
    point.size = 1, jitter = 0.5, y.label = "Risk perception\n", x.label = "\nCondition",
    colors = c("red", "blue"), legend.main = "Session", line.thickness = 0.5) + theme_apa(legend.pos = "bottomleft",
    legend.use.title = TRUE, legend.font.size = 12, facet.title.size = 12) + theme(axis.text.x = element_text(color = "#212121",
    size = 10, face = "bold")) + theme(axis.text.y = element_text(color = "#212121",
    size = 10, face = "bold")) + theme(axis.title = element_text(face = "bold")) +
    scale_y_continuous(limits = c(1, 11), breaks = seq(1, 10, 1))
FY

4.1.2 Modello 2: Gender interactions (3-way n.s.)

M2 <- lmer(Percezione_rischio ~ Test * Time + Test * Genere + Durata + Time * Genere +
    (1 | Code), data = ds_long, REML = F)  # I checked the three-way and it is n.s.

Anova(M2, type = 3)
summary(M2)
Linear mixed model fit by maximum likelihood . t-tests use Satterthwaite's
  method [lmerModLmerTest]
Formula: Percezione_rischio ~ Test * Time + Test * Genere + Durata + Time *  
    Genere + (1 | Code)
   Data: ds_long

     AIC      BIC   logLik deviance df.resid 
  1374.5   1415.5   -677.3   1354.5      436 

Scaled residuals: 
     Min       1Q   Median       3Q      Max 
-4.97491 -0.20604  0.21631  0.40809  1.90280 

Random effects:
 Groups   Name        Variance Std.Dev.
 Code     (Intercept) 0.52493  0.72452 
 Residual             0.80361  0.89644 
Number of obs: 446, groups:  Code, 223

Fixed effects:
                                              Estimate Std. Error         df
(Intercept)                                   9.024432   0.187664 316.270660
TestDriving under the influence               0.030539   0.199880 322.172588
TimePOST                                     -0.553515   0.159137 223.000000
GenereDonna                                   0.524139   0.219843 302.533131
Durata                                        0.045823   0.024856 223.000000
TestDriving under the influence:TimePOST      0.371686   0.174260 223.000000
TestDriving under the influence:GenereDonna  -0.253298   0.266168 223.000000
TimePOST:GenereDonna                          0.296242   0.173485 223.000000
                                            t value              Pr(>|t|)    
(Intercept)                                 48.0882 < 0.00000000000000022 ***
TestDriving under the influence              0.1528             0.8786630    
TimePOST                                    -3.4782             0.0006068 ***
GenereDonna                                  2.3842             0.0177345 *  
Durata                                       1.8436             0.0665748 .  
TestDriving under the influence:TimePOST     2.1329             0.0340229 *  
TestDriving under the influence:GenereDonna -0.9516             0.3423072    
TimePOST:GenereDonna                         1.7076             0.0891027 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) TsDuti TmPOST GnrDnn Durata TDuti:T TDuti:G
TstDrvnguti -0.740                                            
TimePOST    -0.424  0.310                                     
GenereDonna -0.641  0.506  0.220                              
Durata      -0.485  0.123  0.000  0.101                       
TDuti:TPOST  0.301 -0.436 -0.710 -0.057  0.000                
TstDutin:GD  0.427 -0.601  0.000 -0.692 -0.029  0.000         
TmPOST:GnrD  0.236 -0.063 -0.557 -0.395  0.000  0.144   0.000 

4.1.2.1 Confidence intervals

confint(M2, level = 0.95)
                                                    2.5 %       97.5 %
.sig01                                       0.5923463648  0.855559120
.sigma                                       0.8192682113  0.986539216
(Intercept)                                  8.6554946244  9.393368459
TestDriving under the influence             -0.3623916548  0.423469195
TimePOST                                    -0.8667664933 -0.240263571
GenereDonna                                  0.0918817918  0.956396614
Durata                                      -0.0031039534  0.094749754
TestDriving under the influence:TimePOST     0.0286657858  0.714705879
TestDriving under the influence:GenereDonna -0.7772329223  0.270637160
TimePOST:GenereDonna                        -0.0452511792  0.637735560

4.1.2.2 Standardized coefficients

stdCoef.merMod <- function(object) {
    sdy <- sd(getME(object, "y"))
    sdx <- apply(getME(object, "X"), 2, sd)
    sc <- fixef(object) * sdx/sdy
    se.fixef <- coef(summary(object))[, "Std. Error"]
    se <- se.fixef * sdx/sdy
    return(data.frame(stdcoef = sc, stdse = se))
}
stdCoef.merMod(M2)

4.1.2.3 Pairwise comparisons

library(emmeans)
library(qualitema)
# x <- emm_cohend( model = M2, formula = pairwise ~ Time | Test, adjust =
# 'bonferroni')
library(interactions)
library(jtools)
FY <- cat_plot(M2, pred = Test, modx = Time, interval = TRUE, plot.points = TRUE,
    point.size = 1, jitter = 0.5, y.label = "Risk perception\n", x.label = "\nCondition",
    colors = c("red", "blue"), legend.main = "Session", line.thickness = 0.5) + theme_apa(legend.pos = "bottomleft",
    legend.use.title = TRUE, legend.font.size = 12, facet.title.size = 12) + theme(axis.text.x = element_text(color = "#212121",
    size = 10, face = "bold")) + theme(axis.text.y = element_text(color = "#212121",
    size = 10, face = "bold")) + theme(axis.title = element_text(face = "bold")) +
    scale_y_continuous(limits = c(1, 11), breaks = seq(1, 10, 1))
FY

4.1.3 Modello 2b: Illusion of control

M3 <- lmer(Percezione_rischio ~ Test * Time + Test * Genere + Time * Genere + IllusionC +
    Durata + (1 | Code), data = ds_long, REML = F)  # I checked the three-way and it is n.s.

Anova(M3, type = 3)
summary(M3)
Linear mixed model fit by maximum likelihood . t-tests use Satterthwaite's
  method [lmerModLmerTest]
Formula: Percezione_rischio ~ Test * Time + Test * Genere + Time * Genere +  
    IllusionC + Durata + (1 | Code)
   Data: ds_long

     AIC      BIC   logLik deviance df.resid 
  1349.4   1394.5   -663.7   1327.4      435 

Scaled residuals: 
     Min       1Q   Median       3Q      Max 
-5.08075 -0.23811  0.21070  0.44472  2.45212 

Random effects:
 Groups   Name        Variance Std.Dev.
 Code     (Intercept) 0.37256  0.61038 
 Residual             0.83462  0.91358 
Number of obs: 446, groups:  Code, 223

Fixed effects:
                                              Estimate Std. Error         df
(Intercept)                                   9.566083   0.202146 341.220412
TestDriving under the influence              -0.036737   0.188720 337.474846
TimePOST                                     -0.637787   0.162899 220.947868
GenereDonna                                   0.343962   0.208961 315.870522
IllusionC                                    -0.232813   0.042260 375.176350
Durata                                        0.042927   0.022953 218.195699
TestDriving under the influence:TimePOST      0.357192   0.177611 218.198197
TestDriving under the influence:GenereDonna  -0.167250   0.246226 218.644759
TimePOST:GenereDonna                          0.359655   0.177175 219.473394
                                            t value              Pr(>|t|)    
(Intercept)                                 47.3226 < 0.00000000000000022 ***
TestDriving under the influence             -0.1947             0.8457730    
TimePOST                                    -3.9152             0.0001203 ***
GenereDonna                                  1.6461             0.1007462    
IllusionC                                   -5.5091         0.00000006711 ***
Durata                                       1.8702             0.0627938 .  
TestDriving under the influence:TimePOST     2.0111             0.0455457 *  
TestDriving under the influence:GenereDonna -0.6793             0.4976971    
TimePOST:GenereDonna                         2.0299             0.0435692 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) TsDuti TmPOST GnrDnn IllsnC Durata TDuti:T TDuti:G
TstDrvnguti -0.675                                                   
TimePOST    -0.445  0.339                                            
GenereDonna -0.627  0.496  0.249                                     
IllusionC   -0.486  0.065  0.094  0.157                              
Durata      -0.427  0.121  0.002  0.102  0.023                       
TDuti:TPOST  0.278 -0.470 -0.705 -0.059  0.015  0.000                
TstDutin:GD  0.396 -0.590 -0.006 -0.681 -0.063 -0.031 -0.001         
TmPOST:GnrD  0.255 -0.072 -0.559 -0.432 -0.065 -0.001  0.143   0.004 

4.1.3.1 Confidence intervals

confint(M3, level = 0.95)
                                                    2.5 %       97.5 %
.sig01                                       0.4612834891  0.746478038
.sigma                                       0.8340605531  1.006418223
(Intercept)                                  9.1651564619  9.964004956
TestDriving under the influence             -0.4075237066  0.334430411
TimePOST                                    -0.9589352107 -0.317475129
GenereDonna                                 -0.0664945332  0.755572042
IllusionC                                   -0.3171592049 -0.147425736
Durata                                      -0.0022447538  0.088128599
TestDriving under the influence:TimePOST     0.0074695753  0.706769365
TestDriving under the influence:GenereDonna -0.6524502439  0.317081713
TimePOST:GenereDonna                         0.0111579843  0.708785259

4.1.3.2 Standardized coefficients

stdCoef.merMod <- function(object) {
    sdy <- sd(getME(object, "y"))
    sdx <- apply(getME(object, "X"), 2, sd)
    sc <- fixef(object) * sdx/sdy
    se.fixef <- coef(summary(object))[, "Std. Error"]
    se <- se.fixef * sdx/sdy
    return(data.frame(stdcoef = sc, stdse = se))
}
stdCoef.merMod(M3)

4.1.4 Modello 2c: Illusion of control + optmism

M4 <- lmer(Percezione_rischio ~ Test * Time + Test * Genere + Time * Genere + IllusionC +
    OptimismB + Durata + (1 | Code), data = ds_long, REML = F)  # I checked the three-way and it is n.s.

Anova(M4, type = 3)
summary(M4)
Linear mixed model fit by maximum likelihood . t-tests use Satterthwaite's
  method [lmerModLmerTest]
Formula: Percezione_rischio ~ Test * Time + Test * Genere + Time * Genere +  
    IllusionC + OptimismB + Durata + (1 | Code)
   Data: ds_long

     AIC      BIC   logLik deviance df.resid 
  1345.6   1394.8   -660.8   1321.6      434 

Scaled residuals: 
     Min       1Q   Median       3Q      Max 
-5.09963 -0.26316  0.16826  0.47858  2.42714 

Random effects:
 Groups   Name        Variance Std.Dev.
 Code     (Intercept) 0.34367  0.58624 
 Residual             0.84085  0.91698 
Number of obs: 446, groups:  Code, 223

Fixed effects:
                                              Estimate Std. Error         df
(Intercept)                                   9.700355   0.206639 345.512519
TestDriving under the influence              -0.050059   0.186541 341.053330
TimePOST                                     -0.616543   0.163741 220.714629
GenereDonna                                   0.289797   0.207432 319.474006
IllusionC                                    -0.221101   0.042221 376.576171
OptimismB                                    -0.041228   0.017017 435.234828
Durata                                        0.043304   0.022576 217.365143
TestDriving under the influence:TimePOST      0.335174   0.178499 218.030306
TestDriving under the influence:GenereDonna  -0.095417   0.243940 220.304431
TimePOST:GenereDonna                          0.364407   0.177832 218.644478
                                            t value              Pr(>|t|)    
(Intercept)                                 46.9436 < 0.00000000000000022 ***
TestDriving under the influence             -0.2684             0.7885896    
TimePOST                                    -3.7654             0.0002133 ***
GenereDonna                                  1.3971             0.1633610    
IllusionC                                   -5.2368          0.0000002724 ***
OptimismB                                   -2.4227             0.0158115 *  
Durata                                       1.9181             0.0564037 .  
TestDriving under the influence:TimePOST     1.8777             0.0617529 .  
TestDriving under the influence:GenereDonna -0.3911             0.6960653    
TimePOST:GenereDonna                         2.0492             0.0416394 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) TsDuti TmPOST GnrDnn IllsnC OptmsB Durata TDuti:T TDuti:G
TstDrvnguti -0.659                                                          
TimePOST    -0.421  0.342                                                   
GenereDonna -0.629  0.493  0.245                                            
IllusionC   -0.430  0.060  0.099  0.140                                     
OptimismB   -0.256  0.028 -0.056  0.104 -0.140                              
Durata      -0.409  0.121  0.003  0.100  0.024 -0.007                       
TDuti:TPOST  0.259 -0.475 -0.706 -0.054  0.007  0.051  0.000                
TstDutin:GD  0.409 -0.586  0.001 -0.682 -0.046 -0.120 -0.030 -0.007         
TmPOST:GnrD  0.251 -0.073 -0.558 -0.438 -0.062 -0.009 -0.001  0.142   0.005 

4.1.4.1 Confidence intervals

confint(M4, level = 0.95)
                                                    2.5 %        97.5 %
.sig01                                       0.4318228974  0.7239525939
.sigma                                       0.8370095461  1.0103440037
(Intercept)                                  9.2893566470 10.1077690773
TestDriving under the influence             -0.4165380520  0.3168532684
TimePOST                                    -0.9391535925 -0.2944512230
GenereDonna                                 -0.1176386393  0.6986872502
IllusionC                                   -0.3049880866 -0.1363258522
OptimismB                                   -0.0748227690 -0.0075549747
Durata                                      -0.0011294952  0.0877606421
TestDriving under the influence:TimePOST    -0.0164377956  0.6863842647
TestDriving under the influence:GenereDonna -0.5766172509  0.3841205659
TimePOST:GenereDonna                         0.0146168914  0.7148414486

4.1.4.2 Standardized coefficients

stdCoef.merMod <- function(object) {
    sdy <- sd(getME(object, "y"))
    sdx <- apply(getME(object, "X"), 2, sd)
    sc <- fixef(object) * sdx/sdy
    se.fixef <- coef(summary(object))[, "Std. Error"]
    se <- se.fixef * sdx/sdy
    return(data.frame(stdcoef = sc, stdse = se))
}
stdCoef.merMod(M4)

4.1.5 Modello 3: DEJOY SERIOUSNESS SCALE

M3 <- lmer(Percezione_rischio ~ Test * Time + Time * Dejoy_gravità + Test * Dejoy_gravità +
    Genere + Durata + (1 | Code), data = ds_long, REML = F)
Anova(M3, type = 3)
summary(M3)
Linear mixed model fit by maximum likelihood . t-tests use Satterthwaite's
  method [lmerModLmerTest]
Formula: Percezione_rischio ~ Test * Time + Time * Dejoy_gravità + Test *  
    Dejoy_gravità + Genere + Durata + (1 | Code)
   Data: ds_long

     AIC      BIC   logLik deviance df.resid 
  1329.4   1374.5   -653.7   1307.4      435 

Scaled residuals: 
     Min       1Q   Median       3Q      Max 
-4.18815 -0.24787  0.12149  0.46809  2.39543 

Random effects:
 Groups   Name        Variance Std.Dev.
 Code     (Intercept) 0.43097  0.65648 
 Residual             0.74866  0.86525 
Number of obs: 446, groups:  Code, 223

Fixed effects:
                                                Estimate Std. Error         df
(Intercept)                                     7.765357   0.661128 444.924542
TestDriving under the influence                -0.621841   0.747730 442.784855
TimePOST                                       -2.171996   0.636139 298.621689
Dejoy_gravità                                   0.336321   0.169463 442.922033
GenereDonna                                     0.444643   0.124433 223.149724
Durata                                          0.050072   0.023291 223.667300
TestDriving under the influence:TimePOST        0.346687   0.166676 221.448085
TimePOST:Dejoy_gravità                          0.462376   0.162937 302.235008
TestDriving under the influence:Dejoy_gravità   0.151589   0.193087 443.670597
                                              t value              Pr(>|t|)    
(Intercept)                                   11.7456 < 0.00000000000000022 ***
TestDriving under the influence               -0.8316             0.4060612    
TimePOST                                      -3.4143             0.0007278 ***
Dejoy_gravità                                  1.9846             0.0478024 *  
GenereDonna                                    3.5734             0.0004318 ***
Durata                                         2.1498             0.0326447 *  
TestDriving under the influence:TimePOST       2.0800             0.0386762 *  
TimePOST:Dejoy_gravità                         2.8378             0.0048504 ** 
TestDriving under the influence:Dejoy_gravità  0.7851             0.4328254    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) TsDuti TmPOST Djy_gr GnrDnn Durata TDuti:T TPOST:
TstDrvnguti -0.689                                                  
TimePOST    -0.531  0.123                                           
Dejoy_gravt -0.973  0.680  0.518                                    
GenereDonna -0.089  0.045  0.028 -0.022                             
Durata      -0.078 -0.073  0.005 -0.048  0.129                      
TDuti:TPOST  0.099 -0.110 -0.204 -0.026 -0.001 -0.001               
TmPOST:Djy_  0.522 -0.109 -0.980 -0.529 -0.028 -0.005  0.052        
TstDutin:D_  0.665 -0.980 -0.101 -0.688 -0.019  0.102 -0.002   0.104
confint(M3)
                                                      2.5 %       97.5 %
.sig01                                         0.5253257310  0.783291053
.sigma                                         0.7904788498  0.952567461
(Intercept)                                    6.4584813052  9.071339484
TestDriving under the influence               -2.0945088792  0.849700018
TimePOST                                      -3.4217917903 -0.919403033
Dejoy_gravità                                  0.0015270336  0.671517649
GenereDonna                                    0.1998121321  0.689699464
Durata                                         0.0042363932  0.095930858
TestDriving under the influence:TimePOST       0.0185559257  0.674758774
TimePOST:Dejoy_gravità                         0.1415507678  0.782481771
TestDriving under the influence:Dejoy_gravità -0.2284434289  0.531871032
stdCoef.merMod(M3)
# M3.3 <- lmer(Percezione_rischio ~ Test*Time*Dejoy_gravità + Genere + Durata +
# (1|Code), data = ds_long, REML = F) Anova(M3.3, type = 3) summary(M3.3)
# confint(M3.3) stdCoef.merMod(M3.3)
library(interactions)
sim_slopes(M3, pred = Dejoy_gravità, modx = Time, confint = T)
SIMPLE SLOPES ANALYSIS

Slope of Dejoy_gravità when Time = BASELINE: 

  Est.   S.E.   2.5%   97.5%   t val.      p
------ ------ ------ ------- -------- ------
  0.34   0.17   0.00    0.67     1.98   0.05

Slope of Dejoy_gravità when Time = POST: 

  Est.   S.E.   2.5%   97.5%   t val.      p
------ ------ ------ ------- -------- ------
  0.80   0.16   0.48    1.11     4.95   0.00
FY2 <- interact_plot(M3, pred = Dejoy_gravità, modx = Time, interval = TRUE, plot.points = TRUE,
    point.size = 1, jitter = 0.5, y.label = "Risk perception\n", x.label = "\nDejoy seriousness",
    colors = c("red", "blue"), legend.main = "Session", line.thickness = 1) + theme_apa(legend.pos = "bottomleft",
    legend.use.title = TRUE, legend.font.size = 12, facet.title.size = 12) + theme(axis.text.x = element_text(color = "#212121",
    size = 10, face = "bold")) + theme(axis.text.y = element_text(color = "#212121",
    size = 10, face = "bold")) + theme(axis.title = element_text(face = "bold")) +
    scale_y_continuous(limits = c(1, 11), breaks = seq(1, 10, 1))
FY2

# write.table(dsPRE_POST_ok2, file = 'ds_pre_post.csv', sep = ',', na = ' ',
# dec = '.', row.names = FALSE, col.names = TRUE)

5 FOLLOW UP

followup <- read.table(file = "followup.csv", sep = ",", dec = ".", header = TRUE)
followup$Code <- as.factor(followup$Cod_ID_min_b)

# left_join(dsPRE_POST_ok2, followup, by = 'Code')
## Compute average score for Risk Perception in the followup
followup$Percezione_rischio_f <- rowMeans(followup[, c("RP_scale_1_b", "RP_scale_2_b",
    "RP_scale_3_b", "RP_scale_4_b", "RP_scale_5_b")], na.rm = TRUE)

## Cronbach's alfa
library(psy)
ALFAriskb <- cronbach(cbind(followup[, c("RP_scale_1_b", "RP_scale_2_b", "RP_scale_3_b",
    "RP_scale_4_b", "RP_scale_5_b")]))
ALFAriskb
$sample.size
[1] 140

$number.of.items
[1] 5

$alpha
[1] 0.87372334
## Compute average score for Vankov scale in the followup
followup$Vankov_f <- rowMeans(followup[, c("DUI_int_b", "Inst_att_b", "Per_cont_b",
    "Self_eff_b", "Des_norm_b", "Sub_norm_b", "Aff_att_b")], na.rm = TRUE)

## Cronbach's alfa
library(psy)
ALFAvankovb <- cronbach(cbind(followup[, c("DUI_int_b", "Inst_att_b", "Per_cont_b",
    "Self_eff_b", "Des_norm_b", "Sub_norm_b", "Aff_att_b")]))
ALFAvankovb
$sample.size
[1] 140

$number.of.items
[1] 7

$alpha
[1] 0.12166871
## Compute average score for Dejoy scale (involvement) in the followup
followup$Dejoy_coinvolgimento_f <- rowMeans(followup[, c("involv_DJ_1_b", "involv_DJ_2_b",
    "involv_DJ_3_b", "involv_DJ_4_b", "involv_DJ_5_b", "involv_DJ_6_b", "involv_DJ_7_b",
    "involv_DJ_8_b", "involv_DJ_9_b", "involv_DJ_10_b")], na.rm = TRUE)

## Cronbach's alfa
library(psy)
ALFAdejoyCb <- cronbach(cbind(followup[, c("involv_DJ_1_b", "involv_DJ_2_b", "involv_DJ_3_b",
    "involv_DJ_4_b", "involv_DJ_5_b", "involv_DJ_6_b", "involv_DJ_7_b", "involv_DJ_8_b",
    "involv_DJ_9_b", "involv_DJ_10_b")]))
ALFAdejoyCb
$sample.size
[1] 140

$number.of.items
[1] 10

$alpha
[1] 0.83871183
## Compute average score for Dejoy scale (gravity) in the before the driving
## test
followup$Dejoy_gravità_f <- rowMeans(followup[, c("grav_DJ_1_b", "grav_DJ_2_b",
    "grav_DJ_3_b", "grav_DJ_4_b", "grav_DJ_5_b", "grav_DJ_6_b", "grav_DJ_7_b", "grav_DJ_8_b",
    "grav_DJ_9_b", "grav_DJ_10_b")], na.rm = TRUE)

## Cronbach's alfa
library(psy)
ALFAdejoyGb <- cronbach(cbind(followup[, c("grav_DJ_1_b", "grav_DJ_2_b", "grav_DJ_3_b",
    "grav_DJ_4_b", "grav_DJ_5_b", "grav_DJ_6_b", "grav_DJ_7_b", "grav_DJ_8_b", "grav_DJ_9_b",
    "grav_DJ_10_b")]))
ALFAdejoyGb
$sample.size
[1] 140

$number.of.items
[1] 10

$alpha
[1] 0.78724698
## Compute average score for Dejoy scale (control) in the before the driving
## test
followup$Dejoy_controllo_f <- rowMeans(followup[, c("contol_DJ_1_b", "contol_DJ_2_b",
    "contol_DJ_3_b", "contol_DJ_4_b", "contol_DJ_5_b", "contol_DJ_6_b", "contol_DJ_7_b",
    "contol_DJ_8_b", "contol_DJ_9_b", "contol_DJ_10_b")], na.rm = TRUE)

## Cronbach's alfa
library(psy)
ALFAdejoyConb <- cronbach(cbind(followup[, c("contol_DJ_1_b", "contol_DJ_2_b", "contol_DJ_3_b",
    "contol_DJ_4_b", "contol_DJ_5_b", "contol_DJ_6_b", "contol_DJ_7_b", "contol_DJ_8_b",
    "contol_DJ_9_b", "contol_DJ_10_b")]))
ALFAdejoyConb
$sample.size
[1] 140

$number.of.items
[1] 10

$alpha
[1] 0.62770199
followup$Esperienza_sim <- rowMeans(followup[, c("esp_sim_1", "esp_sim_2", "esp_sim_3")],
    na.rm = TRUE)

ALFAesp_sim <- cronbach(cbind(followup[, c("esp_sim_1", "esp_sim_2", "esp_sim_3")]))
ALFAesp_sim
$sample.size
[1] 140

$number.of.items
[1] 3

$alpha
[1] 0.84301794
followup$Self_efficacy <- rowMeans(followup[, c("DUI_int_b", "Inst_att_b", "Per_cont_b",
    "Self_eff_b", "Des_norm_b", "Sub_norm_b", "Aff_att_b")], na.rm = TRUE)

ALFAself_eff <- cronbach(cbind(followup[, c("DUI_int_b", "Inst_att_b", "Sub_norm_b")]))
ALFAself_eff
$sample.size
[1] 140

$number.of.items
[1] 3

$alpha
[1] 0.61684093
followup$fr_drive <- car::recode(followup$fr_drive, "NA=0; 1=1; 5=2; 6=3; 7=4")

6 STATISTICHE DESCRITTIVE

followup$Multe <- factor(followup$Multe, levels = c(1, 2), labels = c("Sì", "No"))
followup$Patente <- factor(followup$license, levels = c(1, 2), labels = c("Sì",
    "No"))
followup$Incidenti <- factor(followup$inc, levels = c(1, 2), labels = c("Sì", "No"))
followup$DUI <- factor(followup$alc_drive, levels = c(1, 2), labels = c("Sì", "No"))
library(table1)
T1f <- table1(~fr_drive + Patente + Multe + Incidenti + DUI + Esperienza_sim, data = followup)
T1f
Overall
(N=140)
fr_drive
Mean (SD) 2.42 (1.26)
Median [Min, Max] 2.00 [0, 4.00]
Patente
126 (90.0%)
No 14 (10.0%)
Multe
8 (5.7%)
No 118 (84.3%)
Missing 14 (10.0%)
Incidenti
3 (2.1%)
No 123 (87.9%)
Missing 14 (10.0%)
DUI
116 (82.9%)
No 5 (3.6%)
Missing 19 (13.6%)
Esperienza_sim
Mean (SD) 5.57 (2.21)
Median [Min, Max] 5.33 [1.00, 10.0]
followup$IllusionCf <- rowMeans(followup[, c("ill_co1_b", "ill_co2_b")], na.rm = TRUE)
followup$OptimismBf <- rowMeans(followup[, c("Ob1_b", "Ob2_b")], na.rm = TRUE)

ds_full2 <- left_join(followup, dsPRE_POST_ok2, by = "Code")
ds_full2 <- subset(ds_full2, Code != "va637ne")
ds_full2 <- subset(ds_full2, Test != "<NA>")
ds_long_f <- reshape(ds_full2, varying = list(c("Percezione_rischio", "Percezione_rischio2",
    "Percezione_rischio_f"), c("Dejoy_coinvolgimento", "Dejoy_coinvolgimento2", "Dejoy_coinvolgimento_f"),
    c("Dejoy_gravità", "Dejoy_gravità2", "Dejoy_gravità_f"), c("IllusionC1", "IllusionC2",
        "IllusionCf"), c("Ob11", "Ob21", "Ob1_b"), c("Ob31", "Ob32", "Ob3_b")), v.names = c("Percezione_rischio",
    "Dejoy_coinvolgimento", "Dejoy_gravità", "IllusionC", "OptimismB", "PoliceStop"),
    direction = "long", idvar = "Code")

ds_long_f$Time <- factor(ds_long_f$time, levels = c(1, 2, 3), labels = c("BASELINE",
    "POST", "FOLLOW_UP"))

# dsfp <- subset(ds_long_f, Time == 'FOLLOW_UP')
T1p2 <- table1(~Percezione_rischio + Dejoy_coinvolgimento + Dejoy_gravità + Dejoy_controllo +
    IllusionC + OptimismB + PoliceStop | Test + Time, data = ds_long_f)
T1p2
Driving sober
Driving under the influence
Overall
BASELINE
(N=44)
POST
(N=44)
FOLLOW_UP
(N=44)
BASELINE
(N=58)
POST
(N=58)
FOLLOW_UP
(N=58)
BASELINE
(N=102)
POST
(N=102)
FOLLOW_UP
(N=102)
Percezione_rischio
Mean (SD) 9.43 (0.861) 9.31 (1.01) 9.03 (1.56) 9.15 (0.901) 9.32 (0.927) 9.03 (1.14) 9.27 (0.891) 9.32 (0.957) 9.03 (1.33)
Median [Min, Max] 10.0 [7.20, 10.0] 9.80 [5.60, 10.0] 9.60 [1.00, 10.0] 9.30 [6.60, 10.0] 9.60 [5.80, 10.0] 9.40 [5.40, 10.0] 9.60 [6.60, 10.0] 9.80 [5.60, 10.0] 9.50 [1.00, 10.0]
Dejoy_coinvolgimento
Mean (SD) 2.25 (0.718) 2.72 (0.770) 2.42 (0.671) 2.52 (0.971) 2.66 (0.766) 2.44 (0.733) 2.40 (0.877) 2.68 (0.765) 2.44 (0.704)
Median [Min, Max] 2.25 [1.00, 3.60] 2.70 [1.00, 5.00] 2.40 [1.00, 4.50] 2.25 [1.00, 5.00] 2.70 [1.10, 4.30] 2.40 [1.00, 4.80] 2.25 [1.00, 5.00] 2.70 [1.00, 5.00] 2.40 [1.00, 4.80]
Dejoy_gravità
Mean (SD) 3.72 (0.481) 3.76 (0.501) 3.66 (0.578) 3.80 (0.463) 3.83 (0.418) 3.81 (0.488) 3.77 (0.470) 3.80 (0.454) 3.75 (0.532)
Median [Min, Max] 3.80 [1.60, 4.80] 3.70 [2.40, 5.00] 3.70 [1.00, 4.80] 3.80 [2.10, 4.80] 3.80 [2.60, 5.00] 3.80 [1.90, 5.00] 3.80 [1.60, 4.80] 3.80 [2.40, 5.00] 3.80 [1.00, 5.00]
Dejoy_controllo
Mean (SD) 3.30 (0.497) 3.30 (0.497) 3.30 (0.497) 3.31 (0.499) 3.31 (0.499) 3.31 (0.499) 3.31 (0.496) 3.31 (0.496) 3.31 (0.496)
Median [Min, Max] 3.20 [2.50, 5.00] 3.20 [2.50, 5.00] 3.20 [2.50, 5.00] 3.25 [2.10, 4.40] 3.25 [2.10, 4.40] 3.25 [2.10, 4.40] 3.20 [2.10, 5.00] 3.20 [2.10, 5.00] 3.20 [2.10, 5.00]
IllusionC
Mean (SD) 1.84 (1.31) 1.58 (1.30) 1.74 (1.09) 1.86 (1.64) 1.41 (0.969) 1.53 (0.858) 1.85 (1.50) 1.49 (1.12) 1.62 (0.966)
Median [Min, Max] 1.00 [1.00, 5.50] 1.00 [1.00, 7.50] 1.00 [1.00, 5.50] 1.00 [1.00, 8.50] 1.00 [1.00, 6.00] 1.00 [1.00, 5.00] 1.00 [1.00, 8.50] 1.00 [1.00, 7.50] 1.00 [1.00, 5.50]
OptimismB
Mean (SD) 3.09 (2.76) 3.48 (2.97) 3.18 (2.76) 3.69 (3.50) 3.62 (3.27) 3.43 (3.07) 3.43 (3.20) 3.56 (3.13) 3.32 (2.93)
Median [Min, Max] 2.00 [1.00, 10.0] 2.00 [1.00, 10.0] 2.00 [1.00, 10.0] 1.00 [1.00, 10.0] 2.00 [1.00, 10.0] 2.00 [1.00, 10.0] 1.50 [1.00, 10.0] 2.00 [1.00, 10.0] 2.00 [1.00, 10.0]
PoliceStop
Mean (SD) 7.09 (2.48) 7.25 (2.61) 6.30 (2.75) 6.69 (2.92) 6.86 (2.86) 7.02 (2.47) 6.86 (2.73) 7.03 (2.74) 6.71 (2.61)
Median [Min, Max] 8.00 [1.00, 10.0] 8.00 [1.00, 10.0] 6.00 [1.00, 10.0] 7.00 [1.00, 10.0] 7.50 [1.00, 10.0] 7.00 [1.00, 10.0] 7.00 [1.00, 10.0] 8.00 [1.00, 10.0] 6.50 [1.00, 10.0]
ds_long_f$game1 <- factor(ds_long_f$game1, levels = c(1, 2, 3, 4, 5), labels = c("Never",
    "Very rarely", "Only 1/2 times a week", "3/4 times a week", "Very often/every day"))
ds_long_f$Fr_alcol1 <- factor(ds_long_f$Fr_alcol1, levels = c(1, 2, 3, 4, 5, 6),
    labels = c("Never", "Once", "2/4 times", "2/3 times a week", "5/6 times a week",
        "6 or more times a week"))
ds_long_f$M_drink1 <- factor(ds_long_f$M_drink1, levels = c(1, 2, 3, 4, 5, 6), labels = c("None",
    "1/2 drinks", "3/4 drinks", "5/6 drinks", "7/9 drinks", "10 or more drinks"))
ds_long_f$Fam_guida1 <- factor(ds_long_f$Fam_guida1, levels = c(1, 2, 3, 4), labels = c("Never",
    "Sometimes", "Often", "Very often"))

7 CORRELAZIONI

7.1 Solo seconda prova - guida da sobri

library(psych)
ds_long_f$Duration <- as.numeric(ds_long_f$Duration)
post <- subset(ds_long_f, Time == "POST")
sober <- subset(post, Test == "Driving sober")
corPlot(sober[, c("Percezione_rischio", "Dejoy_coinvolgimento", "Dejoy_gravità",
    "IllusionC", "OptimismB", "PoliceStop", "Duration1", "Wpt")], stars = T, cex = 0.5,
    scale = F, diag = F, upper = F, show.legend = F)

7.2 Solo seconda prova - guida da ubriachi

library(psych)
DUI <- subset(post, Test == "Driving under the influence")
corPlot(DUI[, c("Percezione_rischio", "Dejoy_coinvolgimento", "Dejoy_gravità", "IllusionC",
    "OptimismB", "PoliceStop", "Duration1", "Wpt")], stars = T, cex = 0.5, scale = F,
    diag = F, upper = F, show.legend = F)

7.3 Solo follow-up - guida da sobri

library(psych)
follow <- subset(ds_long_f, Time == "FOLLOW_UP")
f_sober <- subset(follow, Test == "Driving sober")
corPlot(f_sober[, c("Percezione_rischio", "Dejoy_coinvolgimento", "Dejoy_gravità",
    "IllusionC", "OptimismB", "PoliceStop")], stars = T, cex = 0.5, scale = F, diag = F,
    upper = F, show.legend = F)

7.4 Solo follow-up - guida da ubriachi

library(psych)
f_DUI <- subset(follow, Test == "Driving under the influence")
corPlot(f_DUI[, c("Percezione_rischio", "Dejoy_coinvolgimento", "Dejoy_gravità",
    "IllusionC", "OptimismB", "PoliceStop")], stars = T, cex = 0.5, scale = F, diag = F,
    upper = F, show.legend = F)

8 REGRESSIONI (TUTTE LE SESSIONI)

8.1 Modello 1

FUP <- c(-1, -1, 2)
PRE_POST <- c(-1, 1, 0)
contrasts(ds_long_f$Time) <- cbind(FUP, PRE_POST)

M1fl <- lmer(Percezione_rischio ~ Test * Time + Durata + Genere + (1 | Code), data = ds_long_f,
    REML = F)
Anova(M1fl, type = 3)
summ(M1fl)
Observations 306
Dependent variable Percezione_rischio
Type Mixed effects linear regression
AIC 876.31
BIC 913.54
Pseudo-R² (fixed effects) 0.07
Pseudo-R² (total) 0.41
Fixed Effects
Est. S.E. t val. d.f. p
(Intercept) 8.80 0.20 44.40 102.00 0.00
TestDriving under the influence 0.07 0.17 0.41 102.00 0.68
TimeFUP -0.11 0.05 -2.23 204.00 0.03
TimePRE_POST -0.06 0.09 -0.67 204.00 0.50
Durata 0.05 0.03 1.71 102.00 0.09
GenereDonna 0.44 0.16 2.70 102.00 0.01
TestDriving under the influence:TimeFUP 0.05 0.07 0.67 204.00 0.50
TestDriving under the influence:TimePRE_POST 0.15 0.12 1.26 204.00 0.21
p values calculated using Satterthwaite d.f.
Random Effects
Group Parameter Std. Dev.
Code (Intercept) 0.63
Residual 0.83
Grouping Variables
Group # groups ICC
Code 102 0.37

8.1.1 Confidence intervals

confint(M1fl)
                                                     2.5 %       97.5 %
.sig01                                        0.4955677864  0.782354200
.sigma                                        0.7543116734  0.916052776
(Intercept)                                   8.4119200427  9.196604322
TestDriving under the influence              -0.2637223638  0.400371746
TimeFUP                                      -0.2140667736 -0.013205954
TimePRE_POST                                 -0.2330414818  0.114859664
Durata                                       -0.0082663687  0.115525560
GenereDonna                                   0.1168992781  0.758218303
TestDriving under the influence:TimeFUP      -0.0879382172  0.178429335
TestDriving under the influence:TimePRE_POST -0.0836591237  0.377703011

8.1.2 Standard coefficients

stdCoef.merMod <- function(object) {
    sdy <- sd(getME(object, "y"))
    sdx <- apply(getME(object, "X"), 2, sd)
    sc <- fixef(object) * sdx/sdy
    se.fixef <- coef(summary(object))[, "Std. Error"]
    se <- se.fixef * sdx/sdy
    return(data.frame(stdcoef = sc, stdse = se))
}
stdCoef.merMod(M1fl)

8.2 Modello 2

M2fl <- lmer(Percezione_rischio ~ Test * Time + Test * Dejoy_gravità + Time * Dejoy_gravità +
    Durata + Genere + (1 | Code), data = ds_long_f, REML = F)  # I checked the three-way and it is n.s.
Anova(M2fl, type = 3)
summ(M2fl)
Observations 306
Dependent variable Percezione_rischio
Type Mixed effects linear regression
AIC 814.00
BIC 866.13
Pseudo-R² (fixed effects) 0.26
Pseudo-R² (total) 0.49
Fixed Effects
Est. S.E. t val. d.f. p
(Intercept) 5.09 0.61 8.33 288.68 0.00
TestDriving under the influence 1.21 0.88 1.38 274.37 0.17
TimeFUP -0.96 0.24 -3.96 232.03 0.00
TimePRE_POST -0.35 0.46 -0.77 229.30 0.44
Dejoy_gravità 1.05 0.16 6.43 299.64 0.00
Durata 0.04 0.03 1.60 99.80 0.11
GenereDonna 0.21 0.14 1.45 104.37 0.15
TestDriving under the influence:TimeFUP -0.01 0.06 -0.23 201.57 0.82
TestDriving under the influence:TimePRE_POST 0.15 0.11 1.42 200.80 0.16
TestDriving under the influence:Dejoy_gravità -0.35 0.23 -1.50 280.01 0.14
TimeFUP:Dejoy_gravità 0.24 0.06 3.70 232.88 0.00
TimePRE_POST:Dejoy_gravità 0.07 0.12 0.61 230.22 0.54
p values calculated using Satterthwaite d.f.
Random Effects
Group Parameter Std. Dev.
Code (Intercept) 0.51
Residual 0.76
Grouping Variables
Group # groups ICC
Code 102 0.31

8.2.1 Confidence intervals

confint(M2fl)
                                                     2.5 %       97.5 %
.sig01                                         0.380714826  0.646491442
.sigma                                         0.688979828  0.838178979
(Intercept)                                    3.888838330  6.290978219
TestDriving under the influence               -0.534737535  2.976629009
TimeFUP                                       -1.442216777 -0.485392837
TimePRE_POST                                  -1.265650798  0.557620157
Dejoy_gravità                                  0.729479685  1.371831321
Durata                                        -0.010100262  0.095364894
GenereDonna                                   -0.072961539  0.485327819
TestDriving under the influence:TimeFUP       -0.137084873  0.108901649
TestDriving under the influence:TimePRE_POST  -0.059350938  0.364099464
TestDriving under the influence:Dejoy_gravità -0.808912384  0.112998892
TimeFUP:Dejoy_gravità                          0.111675815  0.365732951
TimePRE_POST:Dejoy_gravità                    -0.165443063  0.314148905

8.2.2 Standardized coefficients

stdCoef.merMod <- function(object) {
    sdy <- sd(getME(object, "y"))
    sdx <- apply(getME(object, "X"), 2, sd)
    sc <- fixef(object) * sdx/sdy
    se.fixef <- coef(summary(object))[, "Std. Error"]
    se <- se.fixef * sdx/sdy
    return(data.frame(stdcoef = sc, stdse = se))
}
stdCoef.merMod(M2fl)

8.3 Modello 3

M3fl <- lmer(Percezione_rischio ~ Test * Time * Dejoy_gravità + Durata + Genere +
    (1 | Code), data = ds_long_f, REML = F)  # I checked the three-way and it is n.s.
Anova(M3fl, type = 3)
summ(M3fl)
Observations 306
Dependent variable Percezione_rischio
Type Mixed effects linear regression
AIC 801.04
BIC 860.62
Pseudo-R² (fixed effects) 0.29
Pseudo-R² (total) 0.53
Fixed Effects
Est. S.E. t val. d.f. p
(Intercept) 5.39 0.60 8.98 291.88 0.00
TestDriving under the influence 0.79 0.87 0.91 278.56 0.36
TimeFUP -1.94 0.33 -5.86 235.68 0.00
TimePRE_POST -0.44 0.64 -0.68 234.42 0.50
Dejoy_gravità 0.97 0.16 6.06 301.86 0.00
Durata 0.04 0.03 1.56 99.95 0.12
GenereDonna 0.23 0.14 1.67 104.79 0.10
TestDriving under the influence:TimeFUP 1.95 0.47 4.12 230.66 0.00
TestDriving under the influence:TimePRE_POST 0.10 0.90 0.11 230.70 0.91
TestDriving under the influence:Dejoy_gravità -0.24 0.23 -1.04 284.00 0.30
TimeFUP:Dejoy_gravità 0.50 0.09 5.67 236.05 0.00
TimePRE_POST:Dejoy_gravità 0.10 0.17 0.57 234.96 0.57
TestDriving under the influence:TimeFUP:Dejoy_gravità -0.52 0.12 -4.19 231.14 0.00
TestDriving under the influence:TimePRE_POST:Dejoy_gravità 0.01 0.24 0.04 231.19 0.97
p values calculated using Satterthwaite d.f.
Random Effects
Group Parameter Std. Dev.
Code (Intercept) 0.51
Residual 0.73
Grouping Variables
Group # groups ICC
Code 102 0.33

8.3.1 Confidence intervals

confint(M3fl)
                                                                  2.5 %
.sig01                                                      0.391144161
.sigma                                                      0.664123629
(Intercept)                                                 4.206159981
TestDriving under the influence                            -0.929364763
TimeFUP                                                    -2.594107019
TimePRE_POST                                               -1.703693575
Dejoy_gravità                                               0.656583049
Durata                                                     -0.011030314
GenereDonna                                                -0.042613499
TestDriving under the influence:TimeFUP                     1.019668678
TestDriving under the influence:TimePRE_POST               -1.658107291
TestDriving under the influence:Dejoy_gravità              -0.690035351
TimeFUP:Dejoy_gravità                                       0.328591096
TimePRE_POST:Dejoy_gravità                                 -0.237460039
TestDriving under the influence:TimeFUP:Dejoy_gravità      -0.769445233
TestDriving under the influence:TimePRE_POST:Dejoy_gravità -0.455693246
                                                                 97.5 %
.sig01                                                      0.647641394
.sigma                                                      0.807920958
(Intercept)                                                 6.566551839
TestDriving under the influence                             2.520691435
TimeFUP                                                    -1.289821782
TimePRE_POST                                                0.829240698
Dejoy_gravità                                               1.286945012
Durata                                                      0.093445094
GenereDonna                                                 0.510430555
TestDriving under the influence:TimeFUP                     2.881406106
TestDriving under the influence:TimePRE_POST                1.872446859
TestDriving under the influence:Dejoy_gravità               0.215207774
TimeFUP:Dejoy_gravità                                       0.678290971
TimePRE_POST:Dejoy_gravità                                  0.434373059
TestDriving under the influence:TimeFUP:Dejoy_gravità      -0.277458832
TestDriving under the influence:TimePRE_POST:Dejoy_gravità  0.472885673

8.3.2 Standardized coefficients

stdCoef.merMod <- function(object) {
    sdy <- sd(getME(object, "y"))
    sdx <- apply(getME(object, "X"), 2, sd)
    sc <- fixef(object) * sdx/sdy
    se.fixef <- coef(summary(object))[, "Std. Error"]
    se <- se.fixef * sdx/sdy
    return(data.frame(stdcoef = sc, stdse = se))
}
stdCoef.merMod(M3fl)

8.3.3 Slope analysis: interaction Dejoy gravità x Session

Vedere ultimo modello…

8.4 Modello 4

M4fl <- lmer(Percezione_rischio ~ Test * Time * Dejoy_gravità + IllusionC + +PoliceStop +
    OptimismBf + Durata + Genere + (1 | Code), data = ds_long_f, REML = F)  # I checked the three-way and it is n.s.
Anova(M4fl, type = 3)
summ(M4fl)
Observations 306
Dependent variable Percezione_rischio
Type Mixed effects linear regression
AIC 768.38
BIC 839.13
Pseudo-R² (fixed effects) 0.40
Pseudo-R² (total) 0.56
Fixed Effects
Est. S.E. t val. d.f. p
(Intercept) 5.63 0.59 9.60 285.60 0.00
TestDriving under the influence 0.45 0.81 0.56 266.51 0.58
TimeFUP -1.94 0.32 -6.10 240.18 0.00
TimePRE_POST -0.24 0.62 -0.39 238.49 0.69
Dejoy_gravità 0.82 0.15 5.42 299.16 0.00
IllusionC -0.14 0.04 -3.28 286.30 0.00
PoliceStop 0.10 0.02 5.28 305.82 0.00
OptimismBf -0.01 0.02 -0.50 98.93 0.62
Durata 0.03 0.02 1.07 100.26 0.29
GenereDonna 0.21 0.13 1.67 103.64 0.10
TestDriving under the influence:TimeFUP 2.06 0.45 4.53 234.77 0.00
TestDriving under the influence:TimePRE_POST -0.26 0.86 -0.30 235.18 0.77
TestDriving under the influence:Dejoy_gravità -0.15 0.21 -0.72 272.10 0.47
TimeFUP:Dejoy_gravità 0.51 0.09 5.98 240.48 0.00
TimePRE_POST:Dejoy_gravità 0.04 0.16 0.25 238.98 0.81
TestDriving under the influence:TimeFUP:Dejoy_gravità -0.56 0.12 -4.68 235.60 0.00
TestDriving under the influence:TimePRE_POST:Dejoy_gravità 0.10 0.23 0.45 235.61 0.66
p values calculated using Satterthwaite d.f.
Random Effects
Group Parameter Std. Dev.
Code (Intercept) 0.43
Residual 0.70
Grouping Variables
Group # groups ICC
Code 102 0.27

8.4.1 Confidence intervals

confint(M4fl)
                                                                  2.5 %
.sig01                                                      0.303592038
.sigma                                                      0.640824409
(Intercept)                                                 4.474592301
TestDriving under the influence                            -1.154343636
TimeFUP                                                    -2.568434737
TimePRE_POST                                               -1.458467168
Dejoy_gravità                                               0.522766680
IllusionC                                                  -0.228252028
PoliceStop                                                  0.060744407
OptimismBf                                                 -0.061367519
Durata                                                     -0.021372430
GenereDonna                                                -0.038549076
TestDriving under the influence:TimeFUP                     1.164039780
TestDriving under the influence:TimePRE_POST               -1.957425250
TestDriving under the influence:Dejoy_gravità              -0.577884690
TimeFUP:Dejoy_gravità                                       0.342230372
TimePRE_POST:Dejoy_gravità                                 -0.281989823
TestDriving under the influence:TimeFUP:Dejoy_gravità      -0.797760814
TestDriving under the influence:TimePRE_POST:Dejoy_gravità -0.346464721
                                                                 97.5 %
.sig01                                                      0.554581957
.sigma                                                      0.780056585
(Intercept)                                                 6.788043376
TestDriving under the influence                             2.067749301
TimeFUP                                                    -1.315028573
TimePRE_POST                                                0.972333099
Dejoy_gravità                                               1.120377116
IllusionC                                                  -0.055998654
PoliceStop                                                  0.133381453
OptimismBf                                                  0.036578930
Durata                                                      0.072277515
GenereDonna                                                 0.459197018
TestDriving under the influence:TimeFUP                     2.950732613
TestDriving under the influence:TimePRE_POST                1.444456028
TestDriving under the influence:Dejoy_gravità               0.269291369
TimeFUP:Dejoy_gravità                                       0.678115043
TimePRE_POST:Dejoy_gravità                                  0.362794570
TestDriving under the influence:TimeFUP:Dejoy_gravità      -0.325404174
TestDriving under the influence:TimePRE_POST:Dejoy_gravità  0.547726988

8.4.2 Standardized coefficients

stdCoef.merMod(M4fl)

8.4.3 Slope analysis: interaction Dejoy gravità x Session

library(interactions)
sim_slopes(M4fl, pred = Dejoy_gravità, modx = Test, mod2 = Time, confint = T)
█████████████████████ While Time (2nd moderator) = BASELINE ████████████████████ 

SIMPLE SLOPES ANALYSIS

Slope of Dejoy_gravità when Test = Driving sober: 

  Est.   S.E.    2.5%   97.5%   t val.      p
------ ------ ------- ------- -------- ------
  0.27   0.25   -0.22    0.76     1.08   0.28

Slope of Dejoy_gravità when Test = Driving under the influence: 

  Est.   S.E.   2.5%   97.5%   t val.      p
------ ------ ------ ------- -------- ------
  0.58   0.23   0.12    1.04     2.48   0.01

███████████████████████ While Time (2nd moderator) = POST ██████████████████████ 

SIMPLE SLOPES ANALYSIS

Slope of Dejoy_gravità when Test = Driving sober: 

  Est.   S.E.    2.5%   97.5%   t val.      p
------ ------ ------- ------- -------- ------
  0.35   0.24   -0.13    0.83     1.44   0.15

Slope of Dejoy_gravità when Test = Driving under the influence: 

  Est.   S.E.   2.5%   97.5%   t val.      p
------ ------ ------ ------- -------- ------
  0.86   0.25   0.37    1.36     3.43   0.00

████████████████████ While Time (2nd moderator) = FOLLOW_UP ████████████████████ 

SIMPLE SLOPES ANALYSIS

Slope of Dejoy_gravità when Test = Driving sober: 

  Est.   S.E.   2.5%   97.5%   t val.      p
------ ------ ------ ------- -------- ------
  1.84   0.21   1.43    2.25     8.82   0.00

Slope of Dejoy_gravità when Test = Driving under the influence: 

  Est.   S.E.   2.5%   97.5%   t val.      p
------ ------ ------ ------- -------- ------
  0.57   0.22   0.14    0.99     2.59   0.01

8.4.4 Figure: interaction Condition x Session

interact_plot(M4fl, pred = Dejoy_gravità, modx = Test, mod2 = Time, interval = TRUE,
    plot.points = F, point.size = 1, jitter = 0.5, y.label = "Risk perception\n",
    x.label = "\nDejoy seriousness", mod2.labels = c("BASELINE", "POST-TEST", "FOLLOW-UP"),
    colors = c("red", "blue", "darkgreen"), legend.main = "Session", line.thickness = 0.5) +
    theme_apa(legend.pos = "bottomleft", legend.use.title = F, legend.font.size = 10,
        facet.title.size = 10) + theme(axis.text.x = element_text(color = "#212121",
    size = 10, face = "bold")) + theme(axis.text.y = element_text(color = "#212121",
    size = 10, face = "bold")) + theme(axis.title = element_text(face = "bold")) +
    scale_y_continuous(limits = c(1, 10), breaks = seq(1, 10, 1)) + scale_x_continuous(limits = c(1,
    5), breaks = seq(1, 5, 1))

# REGRESSIONE FOLLOWUP

8.5 Modello 1

m1f <- lm(Percezione_rischio ~ Dejoy_gravità + Dejoy_coinvolgimento, follow)
library(jtools)
summ(m1f)
Observations 102
Dependent variable Percezione_rischio
Type OLS linear regression
F(2,99) 26.78
0.35
Adj. R² 0.34
Est. S.E. t val. p
(Intercept) 3.34 0.79 4.23 0.00
Dejoy_gravità 1.43 0.21 6.84 0.00
Dejoy_coinvolgimento 0.14 0.16 0.90 0.37
Standard errors: OLS

8.5.1 Confidence intervals

confint(m1f, level = 0.95)
                           2.5 %     97.5 %
(Intercept)           1.77623124 4.91349321
Dejoy_gravità         1.01179788 1.83951143
Dejoy_coinvolgimento -0.17136826 0.45382728
# How do I compute standardized effects for lm models?

8.5.2 Standard coefficients

m1fs <- lm(Percezione_rischio ~ scale(Dejoy_gravità) + scale(Dejoy_coinvolgimento),
    follow)
library(jtools)
summ(m1fs)
Observations 102
Dependent variable Percezione_rischio
Type OLS linear regression
F(2,99) 26.78
0.35
Adj. R² 0.34
Est. S.E. t val. p
(Intercept) 9.03 0.11 84.32 0.00
scale(Dejoy_gravità) 0.76 0.11 6.84 0.00
scale(Dejoy_coinvolgimento) 0.10 0.11 0.90 0.37
Standard errors: OLS

8.6 Modello 2

m2f <- lm(Percezione_rischio ~ Dejoy_gravità * PoliceStop + esp_sim_1 + esp_sim_2 +
    esp_sim_3 + fr_drive + Genere, follow)
summ(m2f)
Observations 102
Dependent variable Percezione_rischio
Type OLS linear regression
F(8,93) 12.04
0.51
Adj. R² 0.47
Est. S.E. t val. p
(Intercept) -0.91 1.34 -0.68 0.50
Dejoy_gravità 2.26 0.36 6.28 0.00
PoliceStop 0.88 0.22 4.02 0.00
esp_sim_1 -0.04 0.07 -0.56 0.58
esp_sim_2 0.08 0.07 1.16 0.25
esp_sim_3 0.01 0.05 0.11 0.91
fr_drive 0.07 0.08 0.93 0.36
GenereDonna 0.27 0.20 1.30 0.20
Dejoy_gravità:PoliceStop -0.20 0.06 -3.42 0.00
Standard errors: OLS

8.6.1 Confidence intervals

confint(m2f)
                                2.5 %       97.5 %
(Intercept)              -3.572337386  1.758711085
Dejoy_gravità             1.547585755  2.979081527
PoliceStop                0.445198449  1.314203168
esp_sim_1                -0.166122788  0.093097713
esp_sim_2                -0.056892321  0.218260525
esp_sim_3                -0.100535892  0.112270370
fr_drive                 -0.084470367  0.233034083
GenereDonna              -0.139867199  0.670071229
Dejoy_gravità:PoliceStop -0.317176817 -0.084069007

8.6.2 Standard coefficients

m2fs <- lm(Percezione_rischio ~ scale(Dejoy_gravità) * scale(PoliceStop) + scale(esp_sim_1) +
    scale(esp_sim_2) + scale(esp_sim_3) + scale(fr_drive) + Genere, follow)
summ(m2fs)
Observations 102
Dependent variable Percezione_rischio
Type OLS linear regression
F(8,93) 12.04
0.51
Adj. R² 0.47
Est. S.E. t val. p
(Intercept) 8.96 0.14 65.72 0.00
scale(Dejoy_gravità) 0.49 0.12 3.92 0.00
scale(PoliceStop) 0.33 0.10 3.20 0.00
scale(esp_sim_1) -0.10 0.17 -0.56 0.58
scale(esp_sim_2) 0.19 0.17 1.16 0.25
scale(esp_sim_3) 0.01 0.13 0.11 0.91
scale(fr_drive) 0.10 0.10 0.93 0.36
GenereDonna 0.27 0.20 1.30 0.20
scale(Dejoy_gravità):scale(PoliceStop) -0.28 0.08 -3.42 0.00
Standard errors: OLS

8.6.3 Simple slopes: interaction Dejoy gravità x frequency of driving

library(interactions)
sim_slopes(m2f, pred = Dejoy_gravità, modx = PoliceStop, confint = T)
JOHNSON-NEYMAN INTERVAL

When PoliceStop is OUTSIDE the interval [8.40, 20.59], the slope of
Dejoy_gravità is p < .05.

Note: The range of observed values of PoliceStop is [1.00, 10.00]

SIMPLE SLOPES ANALYSIS

Slope of Dejoy_gravità when PoliceStop = 4.0974868 (- 1 SD): 

  Est.   S.E.   2.5%   97.5%   t val.      p
------ ------ ------ ------- -------- ------
  1.44   0.22   1.01    1.87     6.63   0.00

Slope of Dejoy_gravità when PoliceStop = 6.7058824 (Mean): 

  Est.   S.E.   2.5%   97.5%   t val.      p
------ ------ ------ ------- -------- ------
  0.92   0.23   0.45    1.38     3.92   0.00

Slope of Dejoy_gravità when PoliceStop = 9.3142779 (+ 1 SD): 

  Est.   S.E.    2.5%   97.5%   t val.      p
------ ------ ------- ------- -------- ------
  0.39   0.33   -0.26    1.05     1.19   0.24

8.6.4 Figure: interaction Dejoy gravità x Effectiveness of simulator

library(interactions)
library(jtools)
FUP1 <- interact_plot(m2f, pred = Dejoy_gravità, modx = PoliceStop, interval = TRUE,
    plot.points = F, point.size = 1, jitter = 0.5, y.label = "Risk perception\n",
    x.label = "\nDejoy seriousness", colors = c("red", "blue", "red"), modx.labels = c("Low likelihood",
        "Average likelihood", "High likelihood"), legend.main = "Perceived likelihood of being\nstopped by the police",
    line.thickness = 1) + theme_apa(legend.pos = "bottomright", legend.use.title = TRUE,
    legend.font.size = 9, facet.title.size = 8) + theme(axis.text.x = element_text(color = "#212121",
    size = 10, face = "bold")) + theme(axis.text.y = element_text(color = "#212121",
    size = 10, face = "bold")) + theme(axis.title = element_text(face = "bold")) +
    scale_y_continuous(limits = c(1, 10), breaks = seq(1, 10, 1))
FUP1

THE END