@AGUPUBLICATIONS

Tectonics

Supporting Information 2 for:

Meso–Cenozoic geodynamic evolution of the Patagonian foreland: insights from low-temperature thermochronology in the Deseado Massif

Alexis Derycke^{1,2}, Marie Genge^{*3,4,5}, Cécile Gautheron¹, Massimiliano Zattin³, Stefano Mazzoli⁶, Cesar Witt⁴, Hermann Zeyen¹, Rosella Pinna-Jamme¹, Frederic Haurine¹, Marcelo Márquez⁷

1 - Université Paris-Saclay, CNRS, GEOPS, 91405, Orsay, France

2 - Géosciences Rennes, UMR6118, CNRS Université de Rennes, France

3 - Department of Geosciences, University of Padua, Italy

4 – Université de Lille, CNRS, Université du Littoral—Côte d'Opale, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, F 59000 Lille, France

5 – Department of Earth Sciences, University of Hong Kong, Pokfulam Road, Hong Kong, SAR, China

6 - School of Science and Technology, Geology Division, University of Camerino, Italy

7 – Departimento de Geología, Universidad Nacional de la Patagonia SJB, Comodoro Rivadavia, Argentina

Table of content:

Data inversion results
 Figure S4: Thermal model results obtained for the sample of Bajo Grande Fm. (MG52), with predicted thermochronological data results. Figure S5: Thermal model results obtained for the La Leona Fm. samples (G24, G25 and 19#01), with predicted thermochronological data results. Figure S6: Thermal model results obtained for the Bahia Laura Volcanic Complex samples (19#29, 19#08 and 19#15), with predicted thermochronological data results. Figure S7: Thermal model results obtained for the Rio Deseado Complex samples (19#05), with predicted thermochronological data results.
Data inversion with different AHe diffusion model
Figure S8: Forward models were conducted for samples DES19#05 and #11 without the Late Cretaceous–Cenozoic heating phase, for DES19#29 with this heating phase, and for DES19#01 with both scenarios. These models demonstrate that they do not accurately reproduce the AHe dates, AFT dates, and/or lengths compared to the inverse models interpreted and discussed in our study
References

Data inversion results

The raw results of data inversion performed with QTQt (Gallagher, 2012) are presented in Fig S4 to S8.

Figure S4: Thermal model results obtained for the sample of Bajo Grande Fm. (MG52), with predicted thermochronological data results.

Figure S5: Thermal model results obtained for the La Leona Fm. samples (G24, G25 and 19#01), with predicted thermochronological data results.

Figure S6: Thermal model results obtained for the Bahia Laura Volcanic Complex samples (19#29, 19#08 and 19#15), with predicted thermochronological data results.

Figure S7: Thermal model results obtained for the Rio Deseado Complex samples (19#02 and 19#05), with predicted thermochronological data results.

Data inversion with different AHe diffusion model

Figure S8: Forward models were conducted for samples DES19#05 and #11 without the Late Cretaceous–Cenozoic heating phase, for DES19#29 with this heating phase, and for DES19#01 with both scenarios. These models demonstrate that they do not accurately reproduce the AHe dates, AFT dates, and/or lengths compared to the inverse models interpreted and discussed in our study.

References

Gallagher, K., 2012. Transdimensional inverse thermal history modeling for quantitative thermochronology. Journal of Geophysical Research: Solid Earth 117, n/a-n/a. https://doi.org/10.1029/2011JB008825