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Abstract 

The Curiosity rover’s campaign in the Gale crater on Mars provides a large set of close-up images 

of sedimentary formations outcrops displaying a variety of diagenetic features such as light-toned 

veins, nodules and raised ridges. Through 2D and 3D analyses of Mastcam images we herein 

reconstruct the vein network of a sample area and estimated the stress field. Assessment of the 

spatial distribution of light-toned veins shows that the basin infillings, after burial and 

consolidation, experienced a sub-vertical compression and lateral extension coupled with fluid 

overpressure and cracking. Overall, rock failure and light-toned veins formations could have been 

generated by an overload produced by a pulse of infilling material within the basin. 
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1. Introduction 

NASA's Mars Science Laboratory mission, Curiosity, has been surveying the Gale crater since 

August 2012. It is equipped with a set of 17 cameras and 10 scientific instruments that allow rock 

and soil sample observation and analysis. Thanks to the in situ observations of the rover it has been 

possible to recognize fluid circulation features emplaced during diagenesis subsequent to burial 

and consolidation of the sediments. Specifically cross-cutting light-toned veins (Grotzinger et al., 

2014, L’Haridon et al., 2018; Nachon et al., 2014, 2017), nodules (Stack et al., 2014) and raised 

ridges (Siebach et al., 2014; Léveillé et al., 2014; McLennan et al., 2014) were detected. According 

to ChemCam’s Laser Induced Breakdown Spectroscopy (LIBS) measurements, the light-toned 

veins have a Ca-sulfate mineralogy (Nachon et al., 2014) mainly interpreted to be bassanite 

(CaSO4 × 0.5 H2O) at least on the surface exposed portions of the investigated outcrops (Rapin et 

al., 2016). These veins are observed throughout most of the outcrops recorded on the Curiosity 

traverse, especially in the fine-grained sandstones and mudstones, interpreted to be fluvial and 

lacustrine in origin (Grotzinger et al., 2014, 2015). The genesis of the veins is suggested to be 

ascribable to fluid flows that led to dissolution and re-precipitation of sulfate-rich materials 

(L’Haridon et al., 2018; Vaniman et al., 2018; Rapin et al., 2016; Schwenzer et al., 2016, Caswell 

and Milliken, 2017). Veins with mineral infilling are associated to two main stages of formation: 

i) the generation of fractures, which is a consequence of stresses and/or fluid overpressure 

produced by several factors such as fluid thermal expansion, the generation of fluid (i.e. diagenetic 

fluid expulsion), or chemical compaction; ii) the mineral infilling, which implies mineral 

dissolution, transport and precipitation that may occur to form single or multiple veins (e.g. 

Bjørlykke, 1997; Philipp, 2008; Zanella et al., 2020). Thus fluids, a material with suitable T and P 

conditions for dissolution at the original source to precipitation at the final outcropping location 

and fractures providing space for precipitation are the key ingredients to produce a network of 

mineral veins such as the ones observed at Gale crater.  



The purpose of this study is to assess the structural behaviour recorded by a well-exposed 

crack system in a case study area along the rover traverse, to reconstruct the fracturing 

mechanisms, deduce the pattern of stress during fluid circulation and therefore provide some 

insights on the origin of the deformation involved during the formation of these features. 

2. Geological Background 

Gale is a complex crater located on the border of highlands close to the Martian dichotomy 

(5.37°S, 137.81°W) and filled by sedimentary deposits forming a central mound, Aeolis Mons 

(informally known as Mount Sharp). Gale crater is around 150 km in diameter and displays ~5 km 

of elevation difference between the floor and the central peak and rims (Young and Chan, 2017; 

Stack et al., 2016; Grotzinger et al., 2014, 2015; Le Deit et al., 2013; Wray, 2012). The meteor 

impact that formed Gale crater has been estimated to have occurred around the Noachian-

Hesperian boundary (e.g. Le Deit et al., 2013; Thomson et al., 2011; Irwin et al., 2005). In the Late 

Noachian/Early Hesperian epoch a major climatic change led water to be increasingly unstable at 

surface conditions that Gale crater experienced and recorded (e.g. Le Deit et al., 2013). In fact, 

Gale crater has experienced an intricate evolution involving the past presence of surface water 

indicated by rim-crossing carved channels and lacustrine deposits at the mound base (e.g. Le Deit 

et al., 2013, Palucis et al., 2014, Grotzinger et al., 2014; Thomson et al., 2011; Milliken et al., 

2010) and thus this site is considered invaluable for the paleoenvironment reconstruction and 

pivotal for the investigation of Martian habitability (e.g. Rubin et al., 2017, Caswell and Milliken, 

2017).  

Three main sedimentary groups have been identified in-situ by Curiosity rover investigations: 

the Bradbury group, the Mount Sharp group and the Siccar Point group (Fig.1; Grotzinger et al., 

2014, 2015; Treiman et al., 2016). The first two groups are representative of a fluvio-lacustrine 

environment recorded by laminated and cross stratified mudstones, sandstones and pebble 

conglomerates, recognized especially at Pahrump Hills which is part of the Murray formation of 



Mount Sharp group (e.g. Le Deit et al., 2016; Treiman et al., 2016; Stack et al., 2015; Bristow et 

al., 2015; Grotzinger et al., 2014, 2015). The third group is dominated by eolian sedimentary rocks 

that were accumulated unconformably over the other two and cemented (Banham et al., 2018).   

Light-toned veins have been observed pervasively inside the Bradbury and Mount Sharp 

group at a varying frequency (Watkins et al., 2017, L’Haridon et al., 2018). Some veins cross the 

unconformity with the overlying eolian sedimentary rocks from the Siccar Point group (e.g. 

Frydenvang et al., 2017) showing that some of them formed well-after the cementation and erosion 

of the sedimentary layers. A remarkable part of the collected evidence related to the light-toned 

veins are based on the compositional information acquired with ChemCam (Maurice et al., 2012; 

Wiens et al., 2012) and its synergy with other instrument suites onboard Curiosity (e.g. CheMin, 

Chemical and Mineralogy, and MAHLI, Mars Hand Lens Imager). The light-toned veins have a 

calcium and sulfur-rich chemistry consistent with a Ca-sulfate mineralogy (Nachon et al., 2014), 

mainly interpreted to be bassanite from the analysis of the hydrogen emission line (Rapin et al., 

2016).  

The sedimentary rocks of interest for our work are located in the Murray formation, which is 

at the base of the Mount Sharp group. The Murray formation is composed of mudstones 

predominantly, with local fine-grained sandstones (Stein et al., 2018). An enhanced chemical 

alteration has been suggested from the presence of a large fraction of phyllosilicates (up to 25% in 

volume) and high values of chemical indices of alteration (Bristow et al., 2018, Mangold et al., 

2019). The Murray mudstones have been affected by a widespread post-depositional history as 

observed through features such as fracture fills, veins, ridges and nodules, all indicating a complex 

diagenetic history, not limited to the light-toned veins focused in our study (Grotzinger et al., 2015, 

Nachon et al., 2017, L’Haridon et al., 2018). Investigating possible source of fluids that interplayed 

in fractures development would lead to a better understanding of the sulfate veins’ origins (e.g. 

Schwenzer et al., 2016; Grotzinger et al., 2014, 2015, L’Haridon et al., 2018, Gasda et al., 2018). 

The source of sulfur for the sulfate veins filling the Murray mudstones is still unknown, but it has 



been hypothesized to come from strata localized stratigraphically lower or higher than the 

mudstones, or from a lateral source (Grotzinger et al., 2014; McLennan et al., 2014; Nachon et al., 

2015). Nevertheless, the facts that the fluid were mobilized by a late diagenetic event (Nachon et 

al., 2017; Young and Chan, 2017 and references therein) and that sulfate deposits have been 

identified from orbital data in layers above the Murray mudstones (Milliken et al., 2010), favour a 

source from younger sulfate-bearing sediments. Because of the ubiquitous presence of veins, a 

recent study proposed a paleoenvironmental evolution at the entire basin scale that could lead to 

deposition, accumulation, burial, dissolution and reprecipitation of the sulfates that filled the light-

toned veins of Gale (Schwenzer et al., 2016). The light-toned veins of the Gale Crater seem to be 

similar to those observed in many sedimentary basins on Earth. This is especially the case for 

bedding-parallel fibrous gypsum veins called 'beef' veins (Buckland & De La Bèche, 1835) or 

'BPV' for Bedding-parallel veins (e.g. Ukar et al., 2017). Several recent worldwide reviews 

demonstrate that these mineralized veins are very widespread on Earth, especially within 

impermeable and anisotropic materials such as mudstones (Cobbold et al., 2013; Gale et al., 2014; 

Zanella et al., 2020). These veins are interpreted to be the result of fluid-assisted fracturing due to 

pore fluid overpressures and stresses (e.g. Cobbold & Rodrigues, 2007; Cobbold et al., 2013). 

Indeed, the generation of distributed fluid overpressures explain the formation of horizontal tensile 

fractures that can be filled with minerals (e.g. Cobbold & Rodrigues, 2007; Mourgues et al. 2011; 

Zanella et al., 2014). 

We collected structural data based on the distribution of light-toned veins distinguishable in 

the area that the Curiosity rover observed between sol (Martian days)1536 and 1545 (Fig.1a). 

While many outcrops of the Murray formation were either flat or partly buried below sand, this 

location was chosen because of the presence of clean blocks, less than 1 m high, where light-toned 

veins are visible enabling a detailed structural analysis using image analysis and photogrammetry 

helped by the large number of image available. 

 



3. 3D reconstruction and measurements 

 

To investigate the light-toned veins that have been detected in Gale crater we performed 2D 

and 3D analyses of Mastcam and Navcam Curiosity images. Mastcam takes colour images of 1600 

´ 1200 pixels that can be stitched together to create panoramas of the landscape around the rover. 

Mastcam consists of a two-camera system that can acquire true RGB colour images, using a Bayer 

filter, approximating what human eyes would perceive on Mars (Bell et al., 2012). With respect of 

the scientific purpose of Mastcam, the Navcam camera pairs were planned for operational use 

including acquisition of images for the rover’s navigation, robotic planning and documentation, 

remote sensing science instrument pointing, but also general surface imaging (Maki et al., 2011). 

We coupled 2D mosaics of Mastcam images and the production of a 3D Digital Outcrop Model 

(DOM) (e.g. Caravaca et al., 2019) of the same region from both Mastcam and Navcam in order 

to reconstruct the fracture distribution in the area of interest which covers ~100 m2 (Fig.2).  

2D images were observed raw and stitched together, where overlapping acquisitions of 

neighbouring areas were available, in order to exploit full resolution image data for the detection 

of fractures’ characterizing marks (e.g. junctions and lateral continuity) and local distributions in 

relation to other fracture sets and sediment laminations. We performed 3D reconstruction of the 

same investigated outcrops by means of the Agisoft software (Wagner et al., 2014) from multiple 

images taken by Mastcam binocular stereo vision and Navcam systems. Agisoft PhotoScan 

(recently renamed Metashape) is a 3D advanced modelling package based on image data 

processing which can automatically build the models without setting initial values and control 

points. It processes images taken at any position and angle as far adjacent photos share 

corresponding points recognizable on the targets. The scale computed by the software was tested 

by comparing it with known size objects such as rovers’ wheels. Loading the images into Agisoft, 

the software automatically searches for the corresponding points matching and aligning the photos 

and finally generating a sparse point cloud. When the automatic alignment procedure failed, tie 



points were manually implemented in the system to exploit the maximum number of images 

available. On the point cloud, that is generally denser closer to the observation point and 

favourably oriented surfaces, an irregular triangle net can be built, then the texture mapping is 

carried out according to the produced triangle net. We carried out the further step of elaboration 

by using the Cloud Compare environment, which is a 3D point cloud and triangular mesh 

processing software that allows the user to interact with 3D entities rotating, translating, drawing 

2D polylines, picking points and extracting correspondent 2D and 3D information. In this context 

veins were marked by tracing polylines and further structural information (i.e. dip direction and 

dip angle, intersections angles, kinematics estimates) was developed by plane fitting and 

contextual data extraction through the Cloud Compare compass plugin.  

 Processing of structural data was carried out by means of Orient, a spherical projection and 

orientation data analysis software (https://www.frederickvollmer.com/orient/; Fig.3). Orient 

software allows to also perform kinematic and dynamic analysis of structural data including the 

generation of beachball plots (Fig.3e) and stress inversions (Fig.3c,d). The software is based on 

the Mohr–Coulomb failure criterion and automatically generates P and T axes, that indicate 

shortening and extension axes respectively. Fault plane lineation are not recognizable in our 

datasets, thus any extensional kinematic indicator detected along our veins (e.g. en-echelon tension 

gashes, micro pull-aparts, dilatational or constrictional step-overs) were assumed to be resolved 

on the related shear plane as a pure dip slip movement. Conjugate vein sets were interpreted 

according to the Andersonian theory of faulting which says that the maximum principal stress axis 

bisects the acute angle between them. Output data were finally plotted and beachball plots and 

paleostress distribution has been shown including confidence cones displayed by contours levels 

(in Figure 3 red contours highlight the 90% confidence intervals) (Erslev et al., 2004). We derived 

principal stress axes orientation from oblique vein sets (different groups of veins are discussed 

below in section 4).  

 



4. Results 

 

Both from 2D images and 3D reconstruction, the presence of different sets of non-randomly 

distributed fractures was neatly recognizable. All the fractures appear to have a higher resistance 

against erosion with respect of the host rock, in fact they tend to stick out from the knobs leading 

to an easy identification all over the outcrops. The first general distinction is the overall presence 

of one population of bedding-parallel light-toned veins and a second population of middle to high-

angle dipping light-toned veins (Fig.4).  

Bedding-parallel veins do not show significant thickness variations (averagely <1 cm) both at 

the single vein scale and among the general population, although lateral continuity is unclear and 

visible edges cropping out from the rocky knobs appear rounded and jagged. Bedding-parallel 

veins show a well recognizable average undulate, slightly wandering trend as recognizable in the 

measurements which display an averagely 12° ± 8 dipping angle variation range and a broad 

variability among the recorded dip directions (Fig3h) due to the variability of the available data, 

i.e. the outcropping visible veins, randomly sampling the undulate trend. Despite a consistently 

sub-horizontal and sub-parallel behaviour at the scale of the study area, bedding-parallel veins 

show in places a cross cutting relationship bending and stopping on the neighbouring ones 

(Fig.4b).  

Oblique veins are less frequent than the sub-horizontal population (Fig.4). These veins display 

clear “en-echelon” structures well recognizable by the distinctive arrays of sigmoidal shaped 

cracks (Nicholson and Pollard, 1985), twisting out and bending as the result of mechanical 

interaction between tips of adjacent parallel cracks (Pollard et al. 1982). Such geometries are used 

to infer the state of deformation (Ramsay & Huber 1983) or the state of stress (Pollard et al. 1982, 

Rickard & Rixon 1983) in the surrounding rock at the time of cracking and accordingly, in the 

specificity of this case study, the “en-echelon” features are considered tensile veins opening in 

response to bulk non-coaxial shear whose extensional kinematics is displayed in figure 4a. We 



measured two different sets of oblique cracks based on dip/dip-direction trends: (i) one with an 

average value of dip direction: 290°N and dip: 67° (spanning between minimum and maximum 

values of: 264°-309° dip direction and 54°-77° dip) and a (ii) second one showing a dip direction-

dip average value of 155°N - 53° (spanning between minimum and maximum values of: 126°-

184° dip direction and 31°-71° dip). On a vertical section (as the ones provided by the outcrops 

walls facing toward the Curiosity rover), the two populations of oblique fractures are thus 

intersecting at an average angle of 60° according to the measurements, as illustrated by single 

outcrops where fractures from both the oblique sets are visible (Fig.4). 

In the study area it was also possible to observe cross-cutting relationships between the 

different sets above distinguished by orientation. No evidence of displacement was found and 

neither recurrent truncation of one set on the other were observed to determine an occurrence 

sequence (Fig.4d,e). 

 

5. Discussions 

 

On Mars, the combination of 2D and 3D products on the Gale crater floor with high-resolution 

in situ data along the rover track allows to pursue a structural interpretation of the basin at the time 

of the generation of the light-toned veins. The general trend of all the plane sets to crosscut the 

host rock laminations leads in first place to exclude a depositional layering interpretation. The 

presence of two cross-cutting sets of light-toned vein sets arranged ~60° apart and displaying en-

echelon structures highlighting shear sense that led to a lowering of the hanging wall suggest an, 

at least partial, regime of extension. We exploited such vein sets to reconstruct the paleostress 

distribution by means of an automatic computational method implemented in the Orient software 

as discussed in section 3. Accordingly, the maximum principal stress is suggested to bisect the 

acute angle occurring between the sets that in the specificity of this case would mean that σ1 lays 



on a sub-vertical axis. The minimum σ3 orientation accordingly lays on a sub-horizontal plane and 

displays NW-SE direction (Fig.3).  

The set of horizontal veins is well-matching disposition and morphology of failures induced 

by fluid overpressure recorded on Earth that happened during the fluid resurgence cracking the 

host rock along fresh planes or exploiting previously existing surfaces of weakness such as the 

mudstone bedding and laminations. In fact, as demonstrated theoretically by Cobbold & Rodrigues 

(2007) and experimentally by Mourgues et al. (2011), the generation of horizontal (bedding-

parallel) fractures relates to fluid overpressure. In a sedimentary sequence, where no tectonic stress 

is applied, the principal stress σ1 is vertical due to the weight of the column of sediments itself 

while σ2 and σ3 are horizontal. In such situation, a distributed fluid overpressure will change the 

stress field, thus reducing or balancing σ1. As a consequence, the differential stress will be reduced 

and a local rotation of the stress field can occur and, if the fluid overpressure reaches the vertical 

lithostatic pressure and overcome the rock tensile strength, the generation of horizontal hydraulic 

tensile fractures can appear. Thus, fluid overpressure needs to have played a central role in the 

generation of the vein population herein discussed. Differently, we disfavour flows along local 

solubility gradients and/or chemical gradients and/or pressure solution and precipitation processes. 

In fact, the compositional information collected by the Curiosity MSL (Mars Science Laboratory) 

instrumentation do not favour the hypothesis of a chemical/solubility gradient interplay. 

ChemCam reported the presence of intermittent deposition of evaporitic or early diagenetic 

precipitation of sulfates in the Murray formation (Rapin et al., 2019). While these sulfates are 

faintly and locally detected, there are neither observed in the first 100 m of the Murray formation 

(where the studied outcrops are located) nor in the Bradbury formation while Ca-sulfate veins are 

also present. In addition, these depositional sulfates also contain Mg-sulfates thus it is to be 

expected, due to the high solubility of magnesium, that a solubility front from the host rock should 

also contain Mg-rich fluids, while veins have consistently shown only Ca-sulfates.  



An example of the formation process that produced the horizontal vein set is the paleo-

hydrofracturing model of gypsum veins in the lower Mercia Mudstone Group (Philipp, 2008). This 

group outcrops on the Somerset Coast of SW England, Watchet Bay, and display analogue 

characteristics to the rocks observed in the Gale crater (e.g. Young and Chan, 2017; Cobbold et 

al., 2013). The lower part of the Mercia Mudstone Group consists of several tens of meters of 

poorly bedded, red to reddish-brown unfossiliferous mudstones and siltstones (Whittaker and 

Green, 1983; Leslie et al., 1993), whereas in the upper part the red mudstones are characterized by 

laterally discontinuous evaporite-rich horizons, mainly composed of white nodular gypsum 

(Philipp, 2008). In the Mercia Mudstone Group vein dips show variations from horizontal to 

vertical and the strikes are in broad range of directions, no clear predominant attitude was detected. 

Crosscutting relationships were investigated as well and indicated no prevalent age relationship 

suggesting that the veins may all have formed at the same time (Philipp, 2008). The formation is 

interpreted to have formed in a playa lake or desert plain conditions (Bennison & Wright, 1969; 

Simms & Ruffell, 1990), where ephemeral pools were likely to be present and remobilization and 

accumulation of gypsum primarily disseminated in the sediment could have happened (Leslie et 

al., 1993). In Watchet Bay fluid transport took place mainly along faults and fractures since 

mudstones have a very low original permeability and are commonly effective barriers to fluid 

circulation (Philipp, 2008; Cartwright, 1997). The outcrops show discontinuous anastomosing 

networks of gypsum veins confined to portions of the hosting mudstone. The phenomenon is not 

pervasive to the whole mudstone group though, but it is confined to specific portions often overlain 

by thick grey siltstone layers weakly calcareous (Philipp, 2008). It may in fact occur that veins 

produced by hydrofracturing stop where mechanical contrast boundaries occur (e.g. Brenner and 

Gudmundsson, 2004b; Gudmundsson et al., 2002; Cosgrove, 2001; Gudmundsson and Brenner, 

2001). There is no need of active slipping faults to allow fluid circulation and hydrofracturing, that 

are triggered when the pressure of the fluids sited within the veins exceed the lithostatic pressure 

(Ramsey, 1980). When fluids are involved (e.g. geothermal fluids), buoyancy overpressure can 



convey a significant contribution to the fracturing process. Depending on the stress field, fluids 

can be transported along the veins (i) leading to hydrofracturing propagation of already existing 

fracture planes and anisotropies (i.e. bedding planes and laminations) or (ii) generating 

hydrofracturing into the host rock (Philipp, 2008 and references therein). Philipp (2008) suggests 

an hydrofracturing model to explain the sulphate vein network systems that cut the Mercia 

Mudstone Group based on low permeability of the mudstone that drove fluids, flowing from the 

highest to the lowest hydraulic potential (Domenico & Schwartz, 1998), to enter the rocks along 

faults and fractures and prevented them to penetrate intimately the host rock.  

Even if the Martian dynamics are less constrained with the respect of their terrestrial 

counterparts, we interpret a diffuse fluid overpressure as the primary cause of vein formation due 

to peculiar recognised vein traits such as: (i) the absence of abrupt terminations or thickness 

variations of sub-horizontal veins in correspondence with undulation of the bedding planes 

(potentially indicating local pressure-solution and precipitation processes); (ii) the absence of  

structures  due to  inter bedding shear and/or flexural slip which could have had eventually 

facilitated local dissolution or precipitation processes; (iii) recorded cross cutting relationship with 

the host rock laminations;  (iv) the large abundance of bedding-parallel veins with the respect of 

the oblique ones; and (v) veins’ Ca sulphate composition differing from the primary Ca-Mg 

sulphates of the Murray formation indicating an external source of the precipitated material. 

Moreover, a certain overburden is likely to have been in place at the moment of the vein formation. 

The study area depth at the moment of the vein formation is not known, but it could have reached 

a maximum depth of 3 to 5 kilometres based on crater rim minimum and maximum elevation (Le 

Deit et al., 2013). Accordingly, the maximum overburden load (referred to an average sandstone 

density of 2 323 kg/m³) during vein formation could have reached a range between 0.25 to 0.43 

MPa. In such scenario, to crack the host rock during hydrofracture propagation, the tensile strength 

of the material needs be taken into account. According to the work of Philipp (2012) the sum of 

the lithospheric pressure (pl) and the fluid overpressure at the location where hydrofracturing takes 



place (pe) equals the sum of the stress opposing the opening (σx) and the tensile strength of the 

rock (T). Eq (1):  

𝑝" + 𝑝$ = σ' + 𝑇     (1) 

In the case study herein discussed, horizontal veins needed to overcome σ1 to open which is 

represented by the lithostatic pressure. Accordingly, the minimum fluid overpressure needed to 

open the veins equals the tensile strength of the cracked material, i.e. mudstones that display 

average tensile strength values around 5.4 MPa (Perras and Diederichs, 2014).  

The fluid source for the Martian case study is not entirely clear; fluid flow can be triggered by 

very diverse physical and chemical disequilibria that might generate fluid overpressure. Some 

examples could be compaction due to burial, diagenetic fluid expulsion and buoyancy, 

crystallization, porosity changes and thermal expansion (Neuzil, 1995; Bjørlykke, 1997; Osborne 

& Swarbrick, 1997). On Mars, Gale experienced water-rich early stages (Late Noachian/Early 

Hesperian) during which the crater could have been connected to both surficial and underground 

water reservoirs (e.g., Villanueva et al. 2015; Andrews-Hanna et al., 2010), thus implying 

potentially transient flooding and drying in sabkha or ephemeral lake environments leading to 

mineral (e.g. salts) precipitation and accumulation in the basin (Rapin et al., 2019).  

Nevertheless, these veins are not likely to have formed early in the basin history, but when 

compaction, consolidation and diagenetic processes started affecting the region. In fact a 

significant part of the vein population consists of well recognisable fractures cross-cutting rock 

bedding (both from oblique and bedding-parallel vein sets, this is particularly well visible in the 

sub-horizontal vein sample highlighted in figure 4c), hence the mudstone must have had some 

tensile strength at the time of formation to trigger a brittle response thus excluding a young soft 

host rocks (Schwenzer et al., 2016; Philipp, 2008; Bell, 2000). Thus, subsequent dissolution and 

mobilization by diagenetic fluids of initial deposits, of unclear stratigraphic position yet, may have 

led to the formation of the sulphate veins observed on the rover traverse (L’Haridon et al., 2018; 

Schwenzer et al., 2016; Nachon et al., 2017; Grotzinger et al., 2014; McLennan et al., 2014). 



Additionally, the observed veins are late stage because, at least some of them, crosscut the 

unconformity into the overlying Stimson unit that is an eolian unit formed much later (Rapin et 

al., 2019).  

 

6. Conclusions 

 

Light-toned fracture networks have been observed repeatedly along Curiosity rover traverse 

(e.g. Watkins et al., 2017) and their distribution reflects the stress field they have been exposed to 

at the moment of fracturing. Within the window of ten sols (sol 1536 – sol 1545) herein analysed, 

Curiosity acquired a large number of images from different angles of a field of bedrock knobs 

cropping out from the sand where many sulphate veins were neatly visible. This asset allowed the 

3D reconstruction of the area and, contextually, the 3D reconstruction of the plane set where 

fractures lay. On Earth, similar arrangements can be observed at Watchet Bay where networks of 

intersecting sulphate veins developed thanks to hydrofracturing regimes within reddish mudstone 

levels.  

In Gale, the fracturing process is therefore to be ascribed to two different complementary 

contributions: (i) the 60° dipping fractures are to be considered the product of a combination of 

both fluid overpressures and an extensional regime where the principal stress lays on a vertical 

axis and a shear component was present (Fig.4a); (ii) the set of bedding-parallel fractures are the 

result of a hydrofracturing process where the distributed fluid overpressure was energetic enough 

to open and fill fractures, largely (but not exclusively) following pre-existing weakness surfaces 

constituted by mudstone layering. Additionally, the formation of the bedding-parallel vein set 

might have been synchronous to the formation of the other two sets since no truncation or 

displacement have been observed around the available outcrops. This interpretation is well 

supported by the geological context. Gale is a large crater that experienced water and sediment 

infilling, the vertical maximum stress is reasonably to be ascribed to such progressive overload. 



The cracking drive of hydrofracturing, can be triggered either by the emplacement of an 

overburden that perturbs fluid pressure, or as response to an unloading event when pressurized 

fluids are already stored in the subsurface. The origin of fluids at Gale is still debated and 

overpressure cracking itself does not carry enough information to discriminate it. In the hypothesis 

of a coeval genesis of the oblique and the bedding-parallel vein networks, a pulse of material 

overload or progressive compaction within the crater could have been responsible both for the 

extensional failure and the fluid escape from the already consolidated deposits on the crater floor. 

In fact, Gale crater experienced episodes of lacustrine environment during its late stages of activity, 

far after the deposition of the mudstones in which fractures are observed (as pointed out by the 

presence of fan deposits, Palucis et al., 2016). Hence continuous deposition and eventual multiple 

material pulses are likely to have took place during the crater history and had the potential to 

contribute to the vein generation. In this context, due to the crater circular shape, maximum 

extension is accordingly expected to develop along the radial directions. This is confirmed by σ3 

NE-SW direction recorded in the study area, σ3 thus locally appears to develop radially compared 

to the closest crater rim. However, to better constrain the scenario, it would be necessary to collect 

data from multiple sites along the rover traverse in order to check the behaviour of σ3 at different 

position with the respect of the crater rim. 

Veins mapping and reconstruction allowed the production of a well constrained structural 

context interpretation and cracking driving forces identification which are likely to have been 

active in the whole crater area so producing a structural context for the entirety of the fracture and 

vein networks that have been recorded along the rover traverse. 
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Figure 1. In panel (a) the yellow line with stops displays the Curiosity rover traverse; in the red 

circle the study area is highlighted; the blue dashed line represents the contact between the 

Bradbury group (NW) and the Mount Sharp group (SE). (b) Gale crater surveyed region. (c) 

Stratigraphic column of Gale crater sedimentary rocks (modified after Hurowitz et al., 2017). 

 



Figure 2. (a) 3D Digital Outcrop Model (DOM) of the region of interest within the area that 

Curiosity rover observed between sol 1536 and 1545. (b) Magnification of a portion of the study 

area; veins are highlighted in green above the texture. 

 
 

Figure 3. The stereo plots show: the orientation of the oblique (a,f), bedding-parallel (b,g) and 

entire population (h) fracture planes detected on the study area on Mars; the maximum and 

minimum stress orientations (c,d), the kinematics extracted from the oblique vein set’s data (e). 

Dataset extracted from the 3D DOM: 46 planes.  



 
 
Figure 4. Stitched landscape of the main outcrops within the area of interest. Highlights on key 

traits: (a) recorded and preserved oblique set of veins showing “en-echelon” structures 

(magnification and sketch); (b, c) veins following the crosscutting lamination trend; (d, e) 

crosscutting relationship between horizontal and oblique sets. 

 


