University of Padua

Smartphone identification database

Meneghello, Francesca and Rossi, Michele and Bui, Nicola (2019) Smartphone identification database. [Data Collection]

Related publications

WarningThere is a more recent version of this item available.

Available Versions of this Item

Collection description

This folder is composed of six .mat files containing the data used in the article ''Smartphone Identification via Passive Traffic Fingerprinting: a Sequence-to-Sequence Learning Approach'' by Francesca Meneghello, Michele Rossi and Nicola Bui. The Python source code is available at https://github.com/signetlabdei/smartphone_identification. If you use this dataset, please cite our paper: @article{Meneghello2020Network, author={Francesca Meneghello and Michele Rossi and Nicola Bui}, title={Smartphone Identification via Passive Traffic Fingerprinting: a Sequence-to-Sequence Learning Approach}, journal={IEEE Network Magazine}, volume={}, number={}, pages={}, year={2020} }

DOI: 10.25430/researchdata.cab.unipd.it.00000292
Keywords: LTE control channel measurements, smartphone identification
Subjects: Physical:Sciences and Engineering > Systems and Communication Engineering: Electrical, electronic, communication, optical and systems engineering > Networks (communication networks, sensor networks, networks of robots, etc.)
Department: Departments > Dipartimento di Ingegneria dell'Informazione (DEI)
Depositing User: Francesca Meneghello
Date Deposited: 25 Feb 2020 09:16
Last Modified: 25 Feb 2020 09:16
Creators/Authors:
CreatorsEmailORCID
Meneghello, Francescameneghello@dei.unipd.itorcid.org/0000-0002-9905-0360
Rossi, MicheleUNSPECIFIEDorcid.org/0000-0003-1121-324X
Bui, NicolaUNSPECIFIEDorcid.org/0000-0002-4026-6562
Type of data: Database
Research funder: MIUR
Research project title: Deparment of Excellence
Grant number: Law 232/20106
Collection period:
FromTo
20182018
Resource language: English
Metadata language: English
Publisher: Research Data Unipd
Related publications:
Date: 11 November 2019
Copyright holders: The Authors
URI: https://researchdata.cab.unipd.it/id/eprint/292

Available Files

Data

Cite As

Begin typing (e.g. Chicago or IEEE.) or use the drop down menu.

Begin typing (e.g. en-GB for English, Great Britain) or use the drop down menu.

Export As